

Designation: A194/A194M - 17a

Endorsed by Manufacturers Standardization Society of the Valve and Fittings Industry Used in USNRC-RDT Standards

Standard Specification for Carbon Steel, Alloy Steel, and Stainless Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both¹

This standard is issued under the fixed designation A194/A194M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

- 1.1 This specification² covers a variety of carbon, alloy, and martensitic stainless steel nuts in the size range ½ through 4 in. and metric M6 through M100 nominal. It also covers austenitic stainless steel nuts in the size range ¼ in. and M6 nominal and above. These nuts are intended for high-pressure or high-temperature service, or both. Grade substitutions without the purchaser's permission are not allowed.
- 1.2 Bars from which the nuts are made shall be hot-wrought. The material may be further processed by centerless grinding or by cold drawing. Austenitic stainless steel may be solution annealed or annealed and strain-hardened. When annealed and strain hardened austenitic stainless steel is ordered in accordance with Supplementary Requirement S1, the purchaser should take special care to ensure that 8.2.2, Supplementary Requirement S1, and Appendix X1 are thoroughly understood.
- 1.3 Supplementary requirements of an optional nature are provided. These shall apply only when specified in the inquiry, contract, and order.
- 1.4 This specification is expressed in both inch-pound units and in SI units. However, unless the order specifies the applicable "M" specification designation (SI units), the material shall be furnished to inch-pound units.
- 1.5 The values stated in either inch-pound units or SI units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Within the text, the SI units are shown in brackets.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:³

A153/A153M Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware

A276/A276M Specification for Stainless Steel Bars and Shapes

A320/A320M Specification for Alloy-Steel and Stainless Steel Bolting for Low-Temperature Service

A370 Test Methods and Definitions for Mechanical Testing of Steel Products

A962/A962M Specification for Common Requirements for Bolting Intended for Use at Any Temperature from Cryogenic to the Creep Range

B633 Specification for Electrodeposited Coatings of Zinc on Iron and Steel

B695 Specification for Coatings of Zinc Mechanically Deposited on Iron and Steel

B696 Specification for Coatings of Cadmium Mechanically Deposited

B766 Specification for Electrodeposited Coatings of Cadmium

E112 Test Methods for Determining Average Grain Size

E566 Practice for Electromagnetic (Eddy Current) Sorting of Ferrous Metals

F606/F606M Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, Direct Tension Indicators, and Rivets

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications.

Current edition approved Sept. 1, 2017. Published September 2017. Originally approved in 1936. Last previous edition approved in 2017 as A194/A194M-17. DOI: $10.1520/A0194_A0194M-17A$.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SA-194 in Section II of that code.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

F1940 Test Method for Process Control Verification to Prevent Hydrogen Embrittlement in Plated or Coated Fasteners

F1941/F1941M Specification for Electrodeposited Coatings on Mechanical Fasteners, Inch and Metric

F2329/F2329M Specification for Zinc Coating, Hot-Dip, Requirements for Application to Carbon and Alloy Steel Bolts, Screws, Washers, Nuts, and Special Threaded Fasteners

2.2 ASME Standards:⁴

B 1.1 Unified Screw Threads

B 1.2 Gages and Gaging for Unified Inch Screw Threads

B 1.13M Metric Screw Threads

B 18.2.2 Square and Hex Nuts

B 18.2.4.6M Metric Heavy Hex Nuts

2.3 ISO Standards:⁵

4033 Hexagon High Nuts (Style 2) - Product A and B

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 Austenitic Grades—All grades with a prefix of "8" or "9."
- 3.1.2 Ferritic Grades—Grades 1, 2, 2H, 2HM, 3, 6, 6F, 7, 7M, and 16.
- 3.1.3 *Lot*—Unless otherwise specified (see Discussion below), a lot is the quantity of nuts of a single nominal size and grade produced by the same manufacturing process.
- 3.1.3.1 *Discussion*—When Supplementary Requirement S5 is invoked on the purchase order, the following definitions of a lot shall apply:
- 3.1.3.2 For Grade 8 Nuts—The quantity of all the nuts of a single nominal diameter and grade made from the same heat of steel and made by the same manufacturing process. A 194/
- 3.1.3.3 For All Other Grade Nuts—(see 8.2 and 8.1.2.1)—All the nuts of a single nominal diameter and grade made from the same heat number and heat treated in the same batch if batch-type heat treating equipment is used or heat treated in the same continuous run of not more than 8 h under the same conditions if continuous-type heat treating equipment is used.
 - 3.1.4 *Type:*
 - 3.1.4.1 For Grade 8 Nuts—Variations within the grade designated by a letter and differentiated by chemistry and by manufacturing process.
 - 3.1.4.2 For Grade 6 Nuts—Variations within the grade designated by the letter F as differentiated by chemical additions made for machineability.
 - 3.1.5 *Series*—The dimensional relationship and geometry of the nuts as described in ASME B 18.2.2 for inch nuts and ISO 4033 for metric nuts sizes M6 through M10 and ASME B 18.2.4.6M for nuts sizes M12 through M100.

4. Ordering Information

- 4.1 The inquiry and order for bolting material and bolting components under this specification shall include the following as required to describe the items adequately:
- 4.1.1 Specification designation, year date, and grade, issue date and revision letter,
 - 4.1.2 Quantity, number of pieces,
 - 4.1.3 Dimensions (see Section 9),
- 4.1.4 Options in accordance with 8.2.2.1, 9.1, 9.2, 10.3, and 12, and
 - 4.1.5 Supplementary Requirements, if any.
- 4.2 Coatings—Coatings are prohibited unless specified by the purchaser (see Supplementary Requirements S7 and S8). When coated nuts are ordered, the purchaser should take special care to ensure that Appendix X2 is thoroughly understood.
- 4.3 See Supplementary Requirement S3 for nuts to be used in low temperature applications (Specification A320/A320M).
- 4.4 *Proof Load Testing*—See Supplementary Requirement S9 for proof load testing of nuts manufactured to dimensions and configurations other than those covered in Tables 3 and 4.

5. Common Requirements

5.1 Bolting material and bolting components supplied to this specification shall conform to the requirements of Specification A962/A962M, of which nuts are considered bolting components, as are bolts, studs, screws, and washers intended for use in special service applications. These requirements include test methods, finish, thread dimensions, marking, certification, optional supplementary requirements, and others. Failure to comply with the requirements of Specification A962/A962M constitutes nonconformance with this specification. In case of conflict between the requirements of this specification and Specification A962/A962M, this specification shall prevail.

6. Manufacture (Process)

- 6.1 Stainless steels for all types of Grade 6 and 8 nuts shall be made by one of the following processes:
- 6.1.1 Electric-furnace (with separate degassing and refining optional),
 - 6.1.2 Vacuum induction furnace, or
- 6.1.3 Either of the above followed by electroslag remelting, or consumable-arc remelting.
- 6.2 The steel producer shall exercise adequate control to eliminate excessive unhomogeneity, nonmetallics, pipe, porosity, and other defects.
- 6.3 Grades 1 and 2 nuts shall be hot or cold forged, or shall be machined from hot-forged, hot-rolled, or cold-drawn bars.
- 6.3.1 All Grade 1 and 2 nuts shall be stress-relieved at a temperature of at least 1000 °F [538 °C] after forming or machining from bar with the following exceptions:
 - 6.3.1.1 Nuts made by hot forging.
 - 6.3.1.2 Nuts machined from hot-forged or hot-rolled bar.
- 6.3.1.3 Nuts machined from hot-forged/hot-rolled and cold-finished (max 10 % reduction in area) bar.

⁴ Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Two Park Ave., New York, NY 10016-5990, http://www.asme.org.

⁵ Available from International Organization for Standardization (ISO), 1, ch. de la Voie-Creuse, CP 56, CH-1211 Geneva 20, Switzerland, http://www.iso.org.

_
B,C,D,
Ċ,
ď,
4,
$\dot{\Xi}$
Ξ
ē
ပ္ပ
<u>a</u>
ŏ
-
\Box
0
≆
sitio
0
₽
Ξ
ō
(Comp
$\overline{}$
S
-
_
eu
neu
emen
iremen
uiremen
quiremen
equiremen
Requiremen
Il Requiremen
al Requiremen
ical Requiremen
mical Requiremen
emical Requiremen
hemical Requiremen
Chemical Requiremen
1 Chemical Requiremen
1 Chemical I
1 Chemical I
1 Chemical I
FABLE 1 Chemical Requiremen

									'UI'														
	Aluminum	: :	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:		:	:
	Vanadium	::	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	0.10-0.30	:	:
	Selenium	: :	:	:	:	0.15 min	:	:	:		÷	:	:	:	0.15 min	:	:	:	:	:		:	:
	Copper	: :	:	:	:	:	:	:	:		÷	:	<u>:</u>	:	:	:	:	:	:	:		:	0.50-1.00
	Nitrogen	::	:	:	:	:	:	:	:		0.06-0.10	:	0.10	:		:	0.10-0.16	0.10-0.16	0.10-0.16	0.10-0.16	0.20-0.40	0.08-0.18	0.18-0.22
	Niobium ^H	: :	:	:	:	:	:	:	10 ×	carbon content, min 1.10	0.20-0.50, 15 x carbon content,	:	:	:	:	:	:	:	:	:	0.10-0.30	:	:
cent	Tita- nium	::	:	:	:	:	:	:	:		:	:	5 x (C+N) min - 0.70		:	:	:	:	:	:	:	:	:
sition, per	Molyb- denum	::	0.40-0.65	:	:	:	0.15-0.25	r _e	h	Si	and	2.00-3.00	ride	:	:	:	:	:	2.00-3.00	2.00-3.00	1.50–3.00	:	6.0–6.5
ts (Compo	Nickel	::	:	(h	ttp	S:	8.0–11.0	9.0–12.0	an	9.0 -1 3.0	10.0-14.0	9.0-15.0 19.0-15.0	8.0–10.0	8.0–10.0	11.0–13.0	8.0–11.0	8.0–11.0	10.0-13.0	10.0–13.0	11.5–13.5	8.0–9.0	17.5–18.5
duiremen	Chromium	: :	4.0–6.0	11.5–13.5	12.0–14.0	12.0–14.0	0.80-1.10	18.0–20.0	17.0–19.0	1e 1	17.0–19.0	16.0–18.0	17.0–19.0	17.0–19.0	17.0–19.0	17.0–19.0	18.0–20.0	18.0–20.0	16.0–18.0	16.0–18.0	20.5–23.5	16.0–18.0	19.5–20.5
E 1 Chemical Requirements (Composition, percent)	Silicon	0.40 0.40 0.40	i/oot	1.00	1.00	ndard	0.15-0.35	AS 8100.1	1.00.T	(A19 eb6b	94/A1941	V[-1	7 <u>a</u> - aba-50	1863	7.00.1	1.00	2001	Ston	1.00	1.00	100.1	3.5-4.5	1 7a
TABLE 1 C	Sulfur ^E	0.050	0.030	0.030	0.15 min	090.0	0.04	0.030	0.030		0.030	0.030	0.030	0.15 min	90.0	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.010
	Phospho- rus	0.040	0.040	0.040	090.0	090.0	0.035	0.045	0.045		0.045	0.045	0.045	0.20	0.20	0.045	0.045	0.045	0.045	0.045	0.045	090.0	0.030
	Manga- nese	1.00	1.00	1.00	1.25	1.25	0.75-1.0	2.00	2.00		2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	4.0-6.0	7.0–9.0	1.00
	Carbon	0.15 min 0.40 min	0.10 min	0.08-0.15	0.15	0.15	0.38-0.48	0.08	0.08		0.005-	0.08	0.08	0.15	0.15	0.12	0.08	0.030	0.08	0.030	90.0	0.10	0.020
	Description and UNS Designation	carbon	(501)		(416)		Chromium-			S34700	(347LN) S34751	(316)		(303)								(09	
	Grade	1 2, 2HM, and 2 2H	ო	9	9		7 ^G , 7M ^G	8, 8A	8C, 8CA		8CLN, 8CLNA	8M, 8MA	8T, 8TA	8F, 8FA	8F, 8FA	8P, 8PA	8N, 8NA	8LN, 8LNA	8MN, 8MNA	8MLN,	ч_	8S, 8SA	8MLCuN, 8MLCuNA

	Aluminum	:	:	0.15 ^B
	Selenium Vanadium Aluminum	:	:	0.25-0.35 0.15 ^B
	Selenium	:	:	:
	Niobium ^H Nitrogen Copper	4.0–5.0	0.75	:
	Nitrogen	0.045	0.18-0.25 0.75	:
		:	:	: :
	Tita- nium	:	:	:
	Molyb- Tita- denum nium	3.0-4.0	6.0-7.0	0.50-0.65
t	Nickel	15.0–16.5	23.5- 25.5 6.0-7.0	dar
itinued	Chromium	17.0–19.0 15.0–16.5 3.0–4.0	20.0-22.0	0.80-1.15
TABLE 1 Continued	rdsiisist	ASTN 0037	1 A19	0.15-0.35 0.80-1.15
TAB	Sulfur ^E	0.010	0.030	0.040
	Phospho- rus	0.040	0.040	0.035
	Manga- nese	2.00	2.00	0.36-0.47 0.45-0.70 0.035
	Carbon	0:030	0:030	0.36-0.47
	Description and UNS Designation	(317) S31730	(AL-6XN) N08367	Chromium Molyb- denum Vanadium
	Grade	B8ML4CuN (317) S31730	9C, 9CA	16

⁴ The intentional addition of Bi, Se, Te, and Pb is not permitted except for Grades 6F, 8F, and 8FA, in which Se is specified and required. $^{\it B}$ Total aluminum, soluble and insoluble.

^C Maximum, unless minimum or range is indicated.

DWhere ellipses (...) appear in this table there is no requirement and the element need not be determined or reported.

E Because of the degree to which sulfur segregates, product analysis for sulfur over 0.060 % max is not technologically appropriate.

F As described in Specification A276/A276M.

Orypical steel compositions used for this grade include 4140, 4142, 4145, 4140H, 4142H, and 4145H.

**Holumbium (Cb) and Niobium (Nb) are alternate names for element 41 in the Periodic Table of the Elements.

Product Analysis—Individual determinations sometimes vary from the specified limits as shown in the tables. The several determinations of any individual element in a heat may not vary both above and below the specified range. Product variation limits are over for maximums, over or under for ranges, and under for minimums, unless otherwise indicated.

TABLE 2 Hardness Requirements^A

		Completed Nu	ts	Sample Nut after Treatment as in 8.1.5			
Grade and Type	Brinell Hardness —	Rockwe	Brinell Hardness,	Rockwell Hardness B			
	Taruness	C Scale	B Scale	min	Scale, min		
1	121 min		70 min	121	70		
2	159 to 352		84 min	159	84		
2H to 11/2 in. or M36, incl	248 to 327	24 to 35		179	89		
2H over 1½ in. or M36	212 to 327	35 max	95 min	147	79		
2HM and 7M	159 to 235		84 to 99	159	84		
3, 7, and 16	248 to 327	24 to 35		201	94		
6 and 6F	228 to 271	20 to 28					
8, 8C, 8CLN, 8M, 8T, 8F, 8P, 8N, 8MN, 8LN, 8MLN, 8MLCuN, 8ML4CuN, and 9C	126 to 300	32 max	60 min				
BA, 8CA, 8CLNA, 8MA, 8TA, 8FA, 8PA, 8NA, 8MNA, 8LNA, 8MLNA, 8MLCuNA, 8ML4CuNA, and 9CA	126 to 192		60 to 90				
8R, 8RA, 8S, and 8SA	183 to 271	25 max	88 min				

^A Where ellipses (...) appear in this table there is no requirement.

- 6.3.1.4 Nuts machined from cold-drawn and annealed (min 1000 °F [538 °C]) bar.
- 6.3.2 Grade 1 and 2 nuts made by hot forging or by machining from hot-forged or hot-rolled bars need not be stress relieved.
- 6.4 Grades 2H, 2HM, 3, 6, 6F, 7, 7M, and 16 nuts shall be hot- or cold-forged or shall be machined from hot-forged, hot-rolled, or cold-drawn bars and shall be heat treated to meet the required mechanical properties. These grades shall be uniformly reheated to the proper austenitizing temperature (a group thus reheated being known as a quenching charge) and quenched under substantially uniform conditions for each quenching charge and tempered as shown below. Grades 2H, 2HM, 3, 7, and 7M shall be liquid quenched. Grades 6 and 6F shall be quenched in liquid or inert gas. Grade 16 shall be heated to a temperature range from 1700 to 1750 °F (925 to 955 °C) and oil quenched.

	Minimum Tempering Temperature, °F
Grade	[°C]
2H	850 [455]
2HM	1150 [620]
3	1050 [565]
6 and 6F	1100 [595]
7	1100 [595]
7M	1150 [620]
16	1200 [650]

Nuts machined from bar heat treated in accordance with this specification need not be reheat-treated. For Grade 2HM and 7M nuts, a final stress relief shall be done at or above the minimum tempering temperature after all forming, machining, and tapping operations. This final stress relief may be the tempering operation.

- 6.4.1 Grade 6 and 6F nuts shall be tempered for a minimum of 1 h at the temperature.
- 6.5 Grades 8, 8C, 8CLN, 8M, 8T, 8F, 8P, 8N, 8MN, 8R, 8S, 8LN, 8MLN, 8MLCuN, 8ML4CuN, and 9C nuts shall be hot or cold forged, or shall be machined from hot-forged, hot-rolled or cold-drawn bars.

6.6 Grades 8A, 8CA, 8CLNA, 8MA, 8TA, 8FA, 8PA, 8NA, 8MNA, 8RA, 8SA, 8LNA, 8MLNA, 8MLCuNA, 8ML4CuNA, and 9CA nuts shall be hot- or cold-forged or shall be machined from hot-forged, hot-rolled, or cold-drawn bars and the nuts shall subsequently be carbide-solution treated by heating them for a sufficient time at a temperature to dissolve chromium carbides followed by cooling at a rate sufficient to prevent reprecipitation of the carbides.

7. Chemical Composition

7.1 Each alloy shall conform to the chemical composition requirements prescribed in Table 1.

8. Mechanical Requirements

- 8.1 Hardness Test:
- 8.1.1 Requirements:
- 8.1.1.1 All nuts shall meet the hardness requirements specified in Table 2.
- 8.1.1.2 Sample nuts of Grades 1, 2, 2H, 2HM, 3, 7, 7M, and 16 which have been given the treatment described in 8.1.5 shall meet the minimum hardness specified in Table 2.
- 8.1.2 Number of Tests—(Grades 1, 2, 2H, 3, 7, and 16 and all types of Grade 6):
- 8.1.2.1 Tests on the number of sample nuts in accordance with the following table shall be performed by the manufacturer following all production heat treatments:

Lot Size	Samples
Up to 800	1
801 to 8000	2
8001 to 22 000	3
Over 22 000	5

- 8.1.2.2 In addition, a hardness test shall be performed by the manufacturer in accordance with 8.1.5 on one sample nut selected from each nominal diameter and series from each grade and heat number following completion of all production heat treatments.
 - 8.1.3 Number of Tests, Grades 2HM and 7M:

TABLE 3 Proof Load Using Threaded Mandrel — Inch Series

Note 1-Proof loads are not design loads.

Naminal	Throado	Ctross Area	Proof Load, lbf ^A								
Nominal	Threads	Stress Area in. ²	G	rade 1	Grades 2,	2HM, 6, 6F, 7M	Grades 2H, 3, 7, 16				
Size, in.	per Inch	ın	Heavy Hex ^B	Hex ^C	Heavy Hex ^D	Hex ^E	Heavy Hex ^F	Hex ^G			
1/4	20	0.0316	4 130	3 820	4 770	4 300	5 570	4 770			
/16	18	0.0524	6 810	6 290	7 860	7 070	9 170	7 860			
3/8	16	0.0774	10 080	9 300	11 620	10 460	13 560	11 620			
7/16	14	0.1063	13 820	12 760	15 940	14 350	18 600	15 940			
1/2	13	0.1419	18 450	17 030	21 280	19 160	24 830	21 280			
/ ₁₆	12	0.182	23 660	21 840	27 300	24 570	31 850	27 300			
/8	11	0.226	29 380	27 120	33 900	30 510	39 550	33 900			
V ₄	10	0.334	43 420	40 080	50 100	45 090	58 450	50 100			
/8	9	0.462	60 060	55 440	69 300	62 370	80 850	69 300			
1	8	0.606	78 780	72 720	90 900	81 810	106 000	90 900			
11/8	8	0.790	102 700	94 800	118 500	106 700	138 200	118 500			
1 1/4	8	1.000	130 000	120 000	150 000	135 000	175 000	150 000			
13/8	8	1.233	160 200	148 000	185 000	166 500	215 800	185 000			
11/2	8	1.492	194 000	170 040	223 800	201 400	261 100	223 800			

		All Types of Grade 8, Grades 9C and 9CA					
			Heavy Hex	ι ^H Hex ^I			
1/4	20	0.0316	2 540	2 380			
5/16	18	0.0524	4 190	3 930			
3/8	16	0.0774	6 200	5 810			
7/16	14	0.1063	8 500	7 970			
1/2	13	0.1419	11 350	10 640			
⁹ /16	12	0.182	14 560	13 650			
5/8	11	0.226	18 080	16 950			
3/4	10	0.334	26 720	25 050			
7/8	9	0.462	36 960	34 650			
1	8	0.606	48 480	45 450			
11/8	8	0.790	63 200	59 250			
11/4	8	1.000	80 000	75 000			
13/8	8	1.233	98 640	92 450			
1½	8	1.492	119 360	111 900			

^A See limit for proof load test in 8.2.2.1. The proof load for jam nuts shall be 46 % of the tabulated load.

8.1.3.2 In addition, 8.1.2.2 shall be met.

8.1.4 Number of Tests, All Types of Grade 8—Tests on the number of sample nuts in accordance with 8.1.2.1 shall be performed by the manufacturer.

8.1.5 Test 2—In addition to the testing required by 8.1.2.1 the manufacturer shall also perform hardness tests on sample nuts after the following test heat treatment. After completion of all production heat treatments heat the specimen nuts to the temperatures indicated below for 24 h, then slow cool. Test at room temperature.

	Temperature
Grade ^A	°F [°C]
1	850 [455]
2, 2H, 2HM	1000 [540]
3, 7, 7M	1100 [590]
16	1200 [650]

^ANuts intended to be coated with zinc or cadmium (marked in accordance with the requirements of Supplementary Requirement S8) are not subjected to the requirements of 8.1.5 (See Appendix X2).

8.1.5.1 Special Requirement, Grades 2HM and 7M— Preparation of Grades 2HM and 7M nuts for hardness test and the hardness test itself shall be performed with consideration to

^B Based on proof stress of 130 000 psi.

 $^{^{\}it C}$ Based on proof stress of 120 000 psi.

 $^{^{\}it D}$ Based on proof stress of 150 000 psi.

^E Based on proof stress of 135 000 psi.

F Based on proof stress of 175 000 psi.

^G Based on proof stress of 150 000 psi.

 $^{^{\}it H}\,{\rm Based}$ on proof stress of 80 000 psi. ¹Based on proof stress of 75 000 psi.

^{8.1.3.1} Each nut shall be tested in accordance with either Specification A962/A962M or with Test Methods F606/F606M to ensure product conformance. The use of 100 % electromagnetic testing for hardness as an alternative to 100 % indentation hardness testing is permissible when qualified by sampling using indentation hardness testing. Each lot tested for hardness electromagnetically shall be 100 % examined in accordance with Practice E566. Following electromagnetic testing for hardness, a random sample of a minimum of 100 pieces in each purchase lot (as defined in 3.1.3) shall be tested by indentation hardness methods. All samples must meet hardness requirements to permit acceptance of the lot. If any one sample is outside of the specified maximum or minimum hardness, the lot shall be rejected and either reprocessed and resampled, or tested 100 % by indentation hardness methods.