INTERNATIONAL STANDARD

ISO 4117

Second edition 1993-02-01

Air and air/land cargo pallets — Specification and testing

Palettes pour le transport aérien et de surface — Spécifications et essais

(https://standards.iteh.ai) Document Preview

<u>ISO 4117:1993</u>

https://standards.iteh.ai/catalog/standards/iso/aea650ef-5749-47bd-b07c-8d937f0c1b35/iso-4117-1993

Reference number ISO 4117:1993(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 4117 was prepared by Technical Committee ISO/TC 20, Aircraft and space vehicles, Sub-Committee SC 9, Air cargo and ground equipment.

This second edition cancels and replaces the first edition (ISO 4117:1980), which has been technically revised.

Annex A of this International Standard is for information only. 749-47bd-b07c-8d937f0c1b35/iso-4117-1993

© ISO 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Introduction

In this International Standard, the minimum essential criteria are expressed by the use of the word "shall". Recommended criteria are expressed by the use of the word "should" and, while not mandatory, are considered to be of primary importance in providing serviceable, economical and practical air transport pallets. Deviation from recommended criteria should occur only after careful consideration, extensive testing and thorough service evaluation have shown alternative methods to be satisfactory.

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>ISO 4117:1993</u>

https://standards.iteh.ai/catalog/standards/iso/aea650ef-5749-47bd-b07c-8d937f0c1b35/iso-4117-1993

iTeh Standards

(https: This page intentionally left blank hai)

Document Preview

<u>ISO 4117:1993</u>

https://standards.iteh.ai/catalog/standards/iso/aea650ef-5749-47bd-b07c-8d937f0c1b35/iso-4117-1993

Air and air/land cargo pallets - Specification and testing

1 Scope

This International Standard specifies dimensional, structural and environmental requirements for 2,44 m (8 ft) wide pallets to be used in freight versions of high-capacity fixed-wing aircraft, intended to be compatible with the 2,44 m \times 2,44 m (8 ft \times 8 ft) cross-section containers described in ISO 8323. Pallet nets to be used in conjunction with these pallets are described in ISO 4115.

This International Standard establishes three classes of pallet:

- Type A, air-only pallets;
- Type B, air/land pallets;

- Type C, adapter pallets.

Pallets have a nominal width of 2,44 m (8 ft) and nominal lengths of 3 m, 5 m, 6 m, 9 m and 12 m (10 ft, 16 ft, 20 ft, 30 ft and 40 ft).

Air-only pallets (Type A) will normally be handled on aircraft equivalent roller conveying systems and/or on similarly equipped ancillary ground handling devices.

The 5 m (16 ft) pallet is to be used only with this type.

Air/land pallets (Type B) are suitable for air/land handling and transport systems. Supplementary requirements for type B pallets are found in 5.5.1.

Air-adapter pallets (Type C) are used to adapt 2,44 m \times 2,44 m (8 ft \times 8 ft) surface-mode only containers (see ISO 1496-1) for air transport. Supplementary requirements for the Type C version are found in 5.5.2.

NOTE 1 Use of the adapter pallet with surface-mode only 2,44 m \times 2,44 m (8 ft \times 8 ft) containers may require uniform load distribution on the base cross members of

these containers for carriage on certain aircraft. The aircraft approved weight and balance manual should be referred to for loadability procedures and/or limitations.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 4115:1987, Air cargo equipment — Air/land pallet onets.

ISO 4116:1986, Air cargo equipment — Ground equipment requirements for compatibility with aircraft unit load devices.

ISO 7166:1985, Aircraft — Rail and stud configuration for passenger equipment and cargo restraint.

United States Federal Test Method Standard, No. 406.¹⁾

3 General characteristics

3.1 Airworthiness

Airworthiness requirements laid down by the applicable authorities shall be recognized for pallet design features.

Ultimate load conditions (see table 3) for pallets of nominal length 3 m, 5 m, 6 m, 9 m and 12 m (10 ft, 16 ft, 20 ft, 30 ft, 40 ft) are in agreement with ISO 8097 for codes 2F1P, 2R1P, 2G1P, 2H1P and 2J1P.

¹⁾ This Standard may be obtained from Specification Sales, Building 197, Washington Navy Yard, General Services Administration, Washington DC 20407, USA.

3.2 Tare weight

The tare weight of the pallet assembly shall be a minimum consistent with the requirements of this International Standard and within the limits of sound design practice.

4 Dimensions and ratings

4.1 Dimensions

External dimensions of pallets shall be as specified in table 1 and figure 1.

4.2 Ratings

The pallet shall be designed to restrain the following gross weights²⁾:

3 m (10 ft) pallet: 5 670 kg (12 500 lb)

5 m (16 ft) pallet: 11 340 kg (25 000 lb)

6 m (20 ft) pallet: 11 340 kg (25 000 lb)

9 m (30 ft) pallet: 15 875 kg (35 000 lb) *

12 m (40 ft) pallet: 20 410 kg (45 000 lb)

5 Design characteristics

5.1 General

5.1.1 The materials and processes used in the construction should give consideration to the extremely hard usage to which the pallet will be subjected in order to provide for maximum service life.

5.1.2 The pallet should be rugged, minimizing maintenance and original costs.

5.1.3 Pallet construction shall be designed for strength and durability to withstand without permanent deformation the static and dynamic loads and impact shocks encountered in normal operational service.

5.1.4 All components of the pallets shall be protected against deterioration or loss of strength in service due to weathering, handling, corrosion or other causes where the type of material used requires such protection.

All metal parts should be suitably protected against corrosion. All non-metallic materials which are liquid absorbent should be sealed or treated to prevent liquid absorption.

5.1.5 The pallet shall be free of any recesses or voids in which cargo (or other material) can be concealed. To meet agricultural requirements, all pallet surfaces should be as free as possible of recesses and protuberances, where pests can hide, or where soil or other residues can accumulate.

5.1.6 All fasteners should be of aircraft standard and the number of sizes, styles and strengths shall be kept to a minimum. No slotted head screws shall be used.

5.1.7 All fittings and appurtenances shall be within the maximum outside dimensions of the pallet.

5.1.8 The materials used shall be fire resistant, in accordance with appropriate regulatory requirements.

5.1.9 The pallet shall be so designed that it will withstand handling common to air/land freight terminal and ramp operations.

²⁾ The term "weight" is used throughout this International Standard, instead of the correct technical term "mass", in order to conform to current commercial usage.

Figure 1 - Pallet dimensions

https://standards.iteh.ai/catalog/standards/iso/aea650ef-5749-47bd-b07c-8d937f0c1b35/iso-4117-1993

Overall length		Overa	ll width		Dimensions							
	L		W	Nominal thickness	A		В		С		D	
mm	in	mm	in		mm	in	mm	in	mm	in	mm	in
2 991 _5	117 3/4 0 -3/16	$2 438 \begin{array}{c} 0 \\ -5 \end{array}$	96 0 _3/16	1)	239,27	9,42	391,92	15,43	238	9,37	418,34	16,47
4 978 ⁰ 6	196 0 _1/4	2 4385	960 	1)	239,27	9,42	391,92	15,43	238	9,37	409,19	16,11
6 058 _6	238 1/2 0 4	2 438 _5	96 0 _3/16	1)	239,27	9,42	391,92	15,43	238	9,37	432,31	17,02
9 125 _0 _10	$359 \ 1/4 \ _{-3/8}^{0}$	2 438 $_{-5}^{0}$	96 0 -3/16	1)	239,27	9,42	391,92	15,43	238	9,37	429,26	16,9
12 192 _0 _10	480 0 _3/8	2 438 _5	96 0 -3/16	1)	239,27	9,42	391,92	15,43	238	9,37	419,1	16,5
1) For Type A: 50,8 mm (2 in)												
For Type B: 139,7 mm (5,5 in)												
For Type C: 57,2 mm (2,25 in)												

Table 1 — Pallet dimensions

5.2 Construction

5.2.1 The pallet shall have a nominal thickness as specified in table 1, measured from the lower surface. This thickness may be varied when the design employed results in a lighter and more durable structure capable of accepting uniform loadings of 1.950 kg/m^2 (400 lb/ft²) when supported on a conveying system (see 5.6.1).

5.2.2 The pallet shall be enclosed on all four sides by an edge member conforming to figures 2, 3 and 5.

The vertical surface of the pallet edge between the restraint provisions shown in figures 2 and 5 (Section A-A, Type A and Type B pallets) shall be smooth and continuous to provide an automatically latching aircraft systems interface.

The pallet bottom skin shall be enclosed by its edge member.

The bottom surface shall be flush with the edge member.

The lower edge of the edge members shall be as shown in figure 5.

The pallet corners shall have a 63,5 mm \pm 12,7 mm (2,5 in \pm 0,5 in) radius in the plane of the pallet.

5.2.3 The top and bottom surfaces of the pallet shall be parallel, flat and continuous.

Over the entire length of the pallet, the bottom surface shall be smooth and shall be a flat plane to within 1,6 mm (0,062 5 in). The waviness factor from crest to crest shall have a pitch of at least 914 mm (36 in).

No part of the structure shall protrude below the bottom surface.

5.2.4 The pallet lower surface shall comply with following conditions.

a) Ball load capability

The pallet base surface or a representative portion thereof shall be subjected to a load of 408 kg (900 lb) transmitted via a steel ball of 25,4 mm (1 in) diameter without exhibiting permanent indentation in excess of 0,51 mm (0,02 in).

b) Ball caster load capability

The base or a representative portion thereof shall be subjected to a uniformly distributed

load of 95,5 kg (210 lb) supported by four 25,4 mm (1 in) diameter steel ball casters on a 127 mm \times 127 mm (5 in \times 5 in) grid pattern.

The base shall be moved over the casters for a minimum of 5 000 passes along a fixed line in each of two directions, 90° (1,57 rad) to, and intersecting, each other.

The length of the stroke shall be approximately 305 mm (12 in).

At conclusion, there shall be no evidence of deterioration of the base/ball caster interface surface.

c) Abrasion resistance of plastic-coated or magnesium-base materials

Three samples of the pallet base assembly material shall be subjected to the test specified in USFTMS, No. 406, Method 1091, or an equivalent method.

The abrasion wheel shall be dressed every 1 000 cycles.

An ACS-10 wheel with a load of 500 g shall be used for all tests.

The average weight loss shall not exceed the following values:

- after 1 000 revolutions: 0,015 g

973 after 2 000 revolutions: an additional 0,005 g

- 49-47bd-b07c-8d937f0c1b35/iso-4117-1993
- after 5 000 revolutions: an additional 0,03 g, up to a total of 0,05 g.

5.2.5 The pallet shall be capable of traversing a 2° (0,035 rad) crest or valley with no permanent deformation or damage. To meet this condition, pallets uniformly loaded to gross weight shall be capable of being supported at the cresting point through a roller contact of 2 032 mm (80 in) minimum width with a roller of 38 mm (1,5 in) maximum diameter.

5.2.6 Aircraft restraint provisions as shown in figures 2, 3 and 5 shall be provided.

5.2.7 Net attachments shall be compatible with the configuration shown in figure 1. As an option, a continuous seat track in accordance with ISO 7166 may be incorporated in the pallet upper surface.

5.2.8 The minimum pallet stiffness shall be $225 \text{ kN} \cdot \text{m}^2$ per metre (2 000 000 lbf in² per inch) of width or length for all pallet sizes.

5.3 Design loads

5.3.1 General

The centre of gravity of the load shall be assumed to vary by

 \pm 10 % of the pallet width measured from the centre-line;

 \pm 5 % of the pallet length measured from the centre-line;

1 219 mm (48 in) measured vertically from the pallet bottom surface.

To achieve the above asymmetric conditions, the cargo density shall be assumed to vary linearly.

5.3.2 Operational loads

Taking a design case where the pallet is supported on a roller system in accordance with 5.6.1, the pallet shall be designed for the operational load as given in table 2 with the cargo centre of gravity located at any point in the range specified in 5.3.1, and under these loads it shall not exhibit any permanent deformation.

Pallets over 3 m (10 ft) in length shall be designed for a gross weight of 6 760 kg (14 900 lb) in any 3 m (10 ft) section of the pallet.

5.3.3 Ultimate loads

When the roller system is in accordance with 5.6.1, the pallet shall be designed for the ultimate load as given in table 3 with the cargo centre of gravity loaded at any point in the range specified in 5.3.1. The pallet may exhibit permanent deformation, but shall not rupture to the extent of discharging cargo.

Table 2 — Operational loads

Pallet Maximum gross			iTen Stand Operational load										
length w		wei	ght	Forward		Aft		Side		Up		Down	
m	ft	kg	lb	kg	lb /	kg	l _{lb} 2	kg S	lb	kg	lb	kg	lb
3	10	5 670	12 500	5 670	12 500	5 670	12 500	5 670	12 500	5 670	12 500	17 010	37 500
5	16	11 340	25 000	11 340	25 000	11 340	25 000	11 340	25 000	11 340	25 000	34 020	75 000
6	20	11 340	25 000	11 340	25 000	11 340	25 000	11 340	25 000	11 340	25 000	34 020	75 000
9	30	15 875	35 000	15 875	35 000	15 875	35 000	15 875	35 000	15 875	35 000	47 630	105 000
12tt	40 S	20 410 5	45 000	20 410	45 000	20 410	45 000	20 410	45 000	20 410	45 000	61 235	135 000
to ac	NOTE – All loads in tables 2 and 3 are mutually exclusive, except that a load equal to the maximum gross weight may be considered to act concurrently with the forward, aft and side loads.												

Table 3 - Ultimate loads

Pallet Maximum gross length weight		Ultimate load											
		weight		Forward		Aft		Side		Up		Down	
m	ft	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb
з	10	5 670	12 500	8 505	18 750	8 505	18 750	8 505	18 750	14 175	31 250	28 350	62 500
5	16	11 340	25 000	17 010	37 500	17 010	37 500	17 010	37 500	28 350	62 500	56 700	125 000
6	20	11 340	25 000	17 010	37 500	17 010	37 500	17 010	37 500	28 350	62 500	56 700	125 000
9	30	15 875	35 000	23 815	52 500	23 815	52 500	23 815	52 500	36 690	87 500	79 380	175 000
12	40	20 410	45 000	30 620	67 500	30 620	67 500	30 620	67 500	51 030	112 500	102 060	225 000
NOTE All loads in tables 2 and 3 are mutually exclusive, except that a load equal to the maximum gross weight may be considered to act concurrently with the forward, aft and side loads.													

5.4 Aircraft restraint loads

Up, side, fore and aft loads shall be restrained by fittings inserted in the restraint slots as shown in figures 2, 3 and 5.

5.4.1 Fore, aft and side loads shall be restrained by a fitting as shown in figure 11 inserted in the side restraint slots.

5.4.1.1 The design shall allow the fore, aft and side loads to be exerted on the following number of load-bearing slots:

3 m (10 ft) pallet: 2 slots

5 m (16 ft) pallet: 4 slots

6 m (20 ft) pallet: 5 slots

9 m (30 ft) pallet: 8 slots

12 m (40 ft) pallet: 11 slots

5.4.1.2 The ultimate fore and aft load for any slot shall be 8 340 daN (18 750 lbf).

5.4.1.3 The fore and aft load-bearing slots shall be considered to be either on one or both sides of the pallet.

https://standards.iteh.ai/catalog/standards/iso/aea65

5.4.2 The up load shall be restrained by a latch as shown in figure 12, inserted in the side restraint slots as shown in figures 3 and 5.

The design shall allow the vertical load to be exerted on the following number of load-bearing slots:

3 m (10 ft) pallet: 6 slots

5 m (16 ft) pallet: 10 slots

6 m (20 ft) pallet: 12 slots

9 m (30 ft) pallet: 18 slots

12 m (40 ft) pallet: 24 slots

The latches shall be equally distributed between both sides and equally spaced along the full length of the pallet. This includes the fore and aft restraint latches.

For 5 m (16 ft) pallets, the areas to be left clear for aircraft latches interface shall be as shown in figure 4.

5.4.3 An end slot shall be provided in accordance with figure 2.

5.4.3.1 Slots shall be designed to restrain a 3 m (10 ft) pallet for ultimate forward, aft and vertical up loads when used in conjunction with restraint fittings in accordance with figure 10.

5.4.3.2 Slots to be used for ground transport restraint on roller bed vehicles shall be provided, as shown in figure 2. The inner face of each outward slot (or block) shall be capable of restraining laterally 33 % of the maximum gross weight. The pallet lower edge member shall be capable of restraining an upward load of 20 % of the maximum gross weight.

5.5 Supplementary requirements for Type B and Type C pallets

5.5.1 Type B pallets

Type IB pallets shall incorporate fittings at the four corners conforming to figures 6 to 8.

Type IIB pallets are 3 m (10 ft) and 6 m (20 ft) pallets only and shall incorporate fork-lift pockets located in accordance with figure 9 and fittings at the corners conforming to figures 6 to 8.

5.5.1.1 Type B pallets shall be capable of withstanding, without permanent deformation, the uniformly distributed ground operational loads specified in table 4 while being lifted from the four corner fittings. (See 6.2.7).

Pallet length		Maximu we	m gross ight	Ground operational load							
m	ft	kg	lb	kg	lb						
3	10	5 670	12 500	11 340	25 000						
5	16	11 340	25 000	22 650	50 000						
6	20	11 340	25 000	22 650	50 000						
9	30	15 875	35 000	31 750	70 000						
12	40	20 410	45 000	40 825	90 000						

Table 4 — Ground operational loads

5.5.1.2 Type B pallets shall withstand without permanent deformation, an industrial truck wheel load of 2 730 kg (6 000 lb) on each of two wheels on 760 mm (30 in) centres anywhere on the pallet, while resting on a surface of sufficient strength and continuity to adequately support the pallet. (See 6.2.8.)

5.5.1.3 Type IIB pallets shall be capable of withstanding a down load equal to 1,25 times the maximum gross weight while supported by the fork-lift pockets. (See 6.2.9.)

5.5.1.4 Each of the four corners shall be capable of supporting at least an 8 340 daN (18 750 lbf) load in either the longitudinal or lateral direction.

5.5.2 Type C pallets

5.5.2.1 The pallet shall incorporate alignment pegs at the four corners, conforming to figures 8 and 14. Each of the alignment pegs shall be capable of supporting at least an 8 340 daN (18 750 lbf) load in the longitudinal, lateral or vertical (down only) direction.

5.5.2.2 The pallet shall incorporate side slots and strap receptacles conforming to figure 13. See figure 15 for a typical usage of restraint straps to secure a surface-mode container to an adapter pallet.

The strap receptacle fitting specified in ISO 7166 shall include a provision for attaching tie-down fittings, each capable of supporting a 2 224 daN (5 000 lbf) ultimate load in the longitudinal and vertical directions.

5.5.2.3 The pallet edges shall have a nominal thickness of 57 mm (2,25 in) from the lower surface.

5.5.2.4 The pallet shall be enclosed on all four sides by an edge member conforming to figures 2, 3, 5 and 13.

5.5.2.5 The pallet corners shall have a 14,5 mm (0,56 in) radius in the plane of the pallet.

5.5.2.6 Aircraft restraint provisions as shown in figures 2, 3, 5 and 13 shall be provided.

5.5.2.7 Up, fore and aft loads shall be supported by a fitting inserted in the restraint slots, as shown in figures 3, 5 and 13.

5.6 Operational criteria

5.6.1 The pallet design shall provide for support and ease of movement at the rated distributed load on minimum conveyor systems, as described as follows:

a) Four rows of rollers approximately equally spaced over a minimum width of 1 930 mm (76 in) measured between centres with each row composed of 38 mm (1,5 in) diameter rollers 76,2 mm (3 in) long, uncrowned, with an edge radius 1,5 mm (0,06 in) spaced on 254 mm (10 in) centres. Pallet travel is perpendicular to the roller axis.

- b) Swivel casters with 25,4 mm (1 in) diameter wheels having a contact length of 50,8 mm (2 in) located on a 305 mm × 305 mm (12 in × 12 in) grid pattern. Pallet travel is in all directions across the grid.
- c) Ball transfer units with 25,4 mm (1 in) diameter balls located on a 127 mm \times 127 mm (5 in \times 5 in) grid pattern. Pallet travel is in all directions across the grid.

5.6.2 The structural and operational integrity of the pallet shall be maintained over a temperature range of -55 °C to +70 °C (-65 °F to +160 °F).

6 Test methods

6.1 General

The test methods described are intended to demonstrate that the pallet meets the design requirements.

6.1.1 The tests are static in nature to minimize the complexity and cost of the required testing facilities. As far as practicable, the applied static loads should take into account the combined static and dynamic loads anticipated in service.

6.1.2 It is intended that tests shall be non-destructive in nature and shall not result in damage to the pallet unless ultimate load conditions are employed.

6.1.3 Test equipment and the test methods described are meant to demonstrate that the pallet meets the requirements of this International Standard. Other equivalent methods may be employed to obtain the desired result.

6.1.4 In selected cases, tests may be repeated under ultimate load conditions when required for substantiation of analytical data. Permanent deformation is permitted under ultimate load conditions. A pallet shall be considered within acceptable limits if it exhibits permanent deformation but does not rupture to the extent of discharging cargo, or break free from the restraint system. If this becomes necessary, the pallet so tested may not be used in service unless all its component parts have been inspected and those that exhibit permanent deformation have been replaced.