This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.



Designation: E3080 - 16 E3080 - 17

An American National Standard

# Standard Practice for Regression Analysis<sup>1</sup>

This standard is issued under the fixed designation E3080; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon ( $\varepsilon$ ) indicates an editorial change since the last revision or reapproval.

#### 1. Scope

1.1 This practice covers regression analysis methodology for estimating, evaluating, and using the simple linear regression model to define the <u>statistical</u> relationship between two numerical variables.

1.2 The system of units for this practice is not specified. Dimensional quantities in the practice are presented only as illustrations of calculation methods. The examples are not binding on products or test methods treated.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety safety, health, and health environmental practices and determine the applicability of regulatory limitations prior to use.

<u>1.4 This international standard was developed in accordance with internationally recognized principles on standardization</u> established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

#### 2. Referenced Documents

2.1 ASTM Standards:<sup>2</sup>

E178 Practice for Dealing With Outlying Observations E456 Terminology Relating to Quality and Statistics E2282 Guide for Defining the Test Result of a Test Method E2586 Practice for Calculating and Using Basic Statistics

#### 3. Terminology

3.1 Definitions—Unless otherwise noted, terms relating to quality and statistics are as defined in Terminology E456.

3.1.1 *characteristic, n*—a property of items in a sample or population which, when measured, counted, or otherwise observed, helps to distinguish among the items.

3.1.1 coefficient of determination,  $r^2$ , n—square of the correlation coefficient.

3.1.3 *confidence interval, n*—an interval estimate [L, U] with the statistics L and U as limits for the parameter  $\theta$  and with confidence level  $1 - \alpha$ , where  $Pr(L \le \theta \le U) \ge 1 - \alpha$ .

3.1.3.1 Discussion-

The confidence level,  $1 - \alpha$ , reflects the proportion of cases that the confidence interval [L, U] would contain or cover the true parameter value in a series of repeated random samples under identical conditions. Once L and U are given values, the resulting confidence interval either does or does not contain it. In this sense "confidence" applies not to the particular interval but only to the long run proportion of cases when repeating the procedure many times.

3.1.4 *confidence level*, n—the value,  $1 - \alpha$ , of the probability associated with a confidence interval, often expressed as a percentage. **E2586** 

#### 3.1.4.1 Discussion-

<sup>&</sup>lt;sup>1</sup> This practice is under the jurisdiction of ASTM Committee E11 on Quality and Statistics and is the direct responsibility of Subcommittee E11.10 on Sampling / Statistics. Current edition approved Nov. 1, 2016Nov. 1, 2017. Published November 2016January 2018. Originally approved in 2019. Last previous edition approved in 2016 as E3080 – 16. DOI: 10.1520/E3080-16.10.1520/E3080-17.

<sup>&</sup>lt;sup>2</sup> For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.



α is generally a small number. Confidence level is often 95 % or 99 %.

3.1.5 correlation coefficient, n-for a population,  $\rho$ , a dimensionless measure of association between two variables X and Y, equal to the covariance divided by the product of  $\sigma_X$  times  $\sigma_Y$ .

3.1.6 correlation coefficient, n—for a sample, r, the estimate of the parameter p from the data.

3.1.7 covariance, n—of a population, cov(X, Y), for two variables, X and Y, the expected value of  $(X - \mu_X)(Y - \mu_Y)$ .

3.1.8 *covariance*, *n*—of a sample; the estimate of the parameter cov(X,Y) from the data.

3.1.9 dependent variable, n-a variable to be predicted using an equation.

3.1.2 *degrees of freedom*, *n*—the number of independent data points minus the number of parameters that have to be estimated before calculating the variance. **E2586** 

3.1.11 deviation, d, n-the difference of an observed value from its mean.

3.1.12 *estimate*, *n*—sample statistic used to approximate a population parameter. E2586

3.1.13 independent variable, n-a variable used to predict another using an equation.

3.1.14 *mean*, *n*—of a population,  $\mu$ , average or expected value of a characteristic in a population – of a sample,  $\bar{x}$ , sum of the observed values in the sample divided by the sample size. **E2586** 

| 3.1.15 parameter, n—see population parameter.                                                                          | <u> </u>                 |
|------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 3.1.16 population, n—the totality of items or units of material under consideration.                                   | <u> </u>                 |
| 3.1.17 population parameter, n-summary measure of the values of some characteristic of a population.                   | E2586                    |
| 3.1.18 prediction interval, n-an interval for a future value or set of values, constructed from a current set of data, | <del>in a way that</del> |
| has a specified probability for the inclusion of the future value.                                                     |                          |
|                                                                                                                        |                          |

3.1.19 regression, n—the process of estimating parameter(s) of an equation using a set of data.

3.1.3 residual, n-observed value minus fitted value, when a model is used.

3.1.21 statistic, n—see sample statistic.

3.1.4 *quantile*, *predictor variable*, *X*, *n*—value such that a fraction<u>a variable</u> fused of the sample or population is less than or equal to that value.to predict a response variable using a regression model. **E2586** 

E2586

#### 3.1.4.1 Discussion—

## **Document Preview**

#### Also called an *independent* or *explanatory* variable.

 3.1.5 sample, regression analysis, n—a group of observations or test results, taken from a larger collection of observations or test results, which serves to provide information that may be used as a basis for making a decision concerning the larger collection.statistical procedure used to characterize the association between two numerical variables for prediction of the response variable from the predictor variable.

 3.1.24 sample size, n, n—number of observed values in the sample.
 E2586

3.1.6 *sample statistic, <u>response variable, Y, n</u>—summary measure of the observed values of a sample.<u>a variable predicted from</u> a regression model.<u>E2586</u>* 

3.1.6.1 Discussion-

#### Also called a dependent variable.

3.1.26 standard error—standard deviation of the population of values of a sample statistic in repeated sampling, or an estimate of it. E2586

3.1.26.1 Discussion-

If the standard error of a statistic is estimated, it will itself be a statistic with some variance that depends on the sample size.

3.1.7 standard deviation—sample correlation coefficient, r, n—of a population, dimensionless  $\sigma$ , the square root of the average or expected value of the squared deviation of a variable from its mean; —measure of association between two variables estimated from of a sample, s, the square root of the sum of the squared deviations of the observed values in the sample from their mean divided by the sample size minus 1.data.

3.1.8 *variance, \sigmasample covariance,*  $^2$ ,  $s_{xy}$ , *n*—square an estimate of the standard deviation of the population or sample.association of the response variable and predictor variable calculated from the data.



3.1.28.1 Discussion-

For a finite population,  $\sigma^2$  is calculated as the sum of squared deviations of values from the mean, divided by *n*. For a continuous population,  $\sigma^2$  is calculated by integrating  $(x - \mu)^2$  with respect to the density function. For a sample,  $s^2$  is calculated as the sum of the squared deviations of observed values from their average divided by one less than the sample size.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *intercept*, *n*—of a regression model,  $\beta_0$ , the value of the response variable when the predictor variable is zero.

3.2.2 regression model parameter, n-a descriptive constant defining a regression model that is to be estimated.

3.2.3 residual standard deviation, n—of a regression model,  $\sigma$ , the square root of the residual variance.

3.2.4 residual variance, *n*—of a regression model,  $\sigma^2$ , the variance of the residuals (see residual).

<u>3.2.5</u> slope, *n*—of a regression model,  $\beta_1$ , the incremental change in the response variable due to a unit change in the predictor variable.

3.3 Symbols:

| $b_0$                                                   | =          | intercept estimate (5.2.2)                                                                            |
|---------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------|
| $\overline{b_1}$                                        | =          | slope estimate (5.2.2)                                                                                |
| $\overline{\beta_0}$                                    | =          | intercept parameter in model (5.1.2)                                                                  |
| $\overline{\beta_1}$                                    | =          | slope parameter in model (5.1.2)                                                                      |
| $\overline{E}$                                          | =          | general point estimate of a parameter (5.4.2)                                                         |
| $\overline{e}_{i}$                                      | =          | residual for data point $i$ (5.2.5)                                                                   |
| 2<br>2                                                  | =          | residual parameter in model (5,1,3)                                                                   |
| $\overline{F}$                                          | =          | F statistic (X1.3.2)                                                                                  |
| $\frac{1}{h}$                                           | =          | index for any value in data range (5.4.5)                                                             |
| $\frac{1}{i}$                                           | =          | index for a data point (5.2.1)                                                                        |
| <u> </u>                                                | =          | number of data points (5.2.1)                                                                         |
| $\frac{n}{r}$                                           | =          | sample correlation coefficient (5.3.2.1)                                                              |
| $\frac{1}{r^2}$                                         | =          | coefficient of determination (5.3.2.2)                                                                |
| $\frac{\overline{S}(b_0, b_1)}{\overline{S}(b_0, b_1)}$ | =          | sum of squared deviations of Y to the regression line $(X112)$                                        |
| <u>States</u>                                           | Ξ          | standard error of slope estimate (543)                                                                |
| SLO                                                     | =          | standard error of intercept estimate (5.4.4) ent Preview                                              |
| <u>SE</u>                                               | =          | general standard error of a point estimate (5.4.2)                                                    |
| $\frac{\sigma_E}{\sigma}$                               | =          | residual standard deviation (5.1.3)                                                                   |
| <u>s</u>                                                | =          | estimate of $\sigma$ (5.2.6)                                                                          |
| $\bar{\sigma}^2$                                        | =          | residual variance (5.1.3)                                                                             |
| $\frac{1}{s^2}$ htt                                     | b <u>₹</u> | estimate of $\sigma^2$ (5.2.6) alog/standards/sist/a81aff10-b71b-46fe-b30c-add5daed0bb3/astm-e3080-17 |
| $\frac{s}{s}$                                           | =          | variance of X data $(X1.2.1)$                                                                         |
| $\frac{1}{s_{\pi}^2}$                                   | =          | variance of Y data $(X1.2.1)$                                                                         |
| $\vec{S}_{vv}$                                          | =          | sum of squares of deviations of X data from average $(5.2.3)$                                         |
| $\overline{S_{vv}}$                                     | =          | sum of cross products of X and Y from their averages $(5.2.3)$                                        |
| SVV                                                     | =          | sample covariance of X and Y (X1.2.1)                                                                 |
| S îvh                                                   | =          | standard error of $\hat{Y}$ . (5.4.5)                                                                 |
| Sŵ                                                      | =          | standard error of future individual Y value (5.4.6)                                                   |
| $\frac{S_{VV}}{S_{VV}}$                                 | =          | sum of squares of deviations of Y data from average $(5.2.3)$                                         |
| t                                                       | =          | Student's t distribution $(5.4.2)$                                                                    |
| $\overline{X}$                                          | =          | predictor variable (5.1.1)                                                                            |
| $\overline{\bar{x}}$                                    | =          | average of X data $(5.2.3)$                                                                           |
| $\frac{1}{X}$                                           | =          | general value of X in its range $(5.4.5)$                                                             |
| $\overline{X}_{i}^{\mu}$                                | =          | value of X for data point $i$ (5.2.1)                                                                 |
| $\overrightarrow{Y}$                                    | =          | response variable (5.1.1)                                                                             |
| $\overline{\overline{Y}}$                               | =          | average of Y data $(5.2.3)$                                                                           |
| $\frac{1}{\hat{Y}}$                                     | =          | predicted future individual Y for a value $X_k$ (5.4.6)                                               |
| $\frac{I_{h(ind)}}{Y}$ .                                | =          | value of Y for data point $i$ (5.2.1)                                                                 |
| $\frac{1}{\hat{V}}$                                     | =          | predicted value of Y for any value $X_i$ (5.4.5)                                                      |
| $\frac{I_h}{\hat{V}}$                                   | _          | predicted value of Y for data point $i$ (5.2.4)                                                       |
| <u>+</u>                                                | _          |                                                                                                       |
| <u>3.4 Ac</u>                                           | cro        | <u>nyms:</u>                                                                                          |
| 3.4.1                                                   | AN         | OVA, n—Analysis of Variance                                                                           |
| 3.4.2                                                   | df,        | <i>n</i> —Degrees of Freedom                                                                          |

3.4.3 LOF, n-Lack of Fit



 3.4.4 MS, n—Mean Square

 3.4.5 MSE, n—Mean Square Error

 3.4.6 MSR, n—Mean Square Regression

 3.4.7 MST, n—Mean Square Total

 3.4.8 PE, n—Pure Error

 3.4.9 SS, n—Sum of Squares

 3.4.10 SSE, n—Sum of Squares Error

 3.4.11 SSR, n—Sum of Squares Regression

 3.4.12 SST, n—Sum of Squares Total

#### 4. Significance and Use

4.1 Regression analysis is a statistical procedure that studies the relations <u>statistical relationships</u> between two or more numerical variables and <u>Ref.</u> utilizes(1, 2existing).<sup>3</sup> data to determine a model equation for prediction of one variable from another. In this standard, a simple linear regression model, that is, a straight line relationship between two variables, is considered<u>In general</u>, one of these variables is designated as a response variable and the rest of the variables are designated as predictor variables. Then the objective of the model is to predict (the<del>1</del>, <del>2</del>) response from the predictor variables.

4.1.1 This standard considers a numerical response variable and only a single numerical predictor variable.

<u>4.1.2 The regression model consists of: (1) a mathematical function that relates the mean values of the response variable distribution to fixed values of the predictor variable, and (2) a description of statistical distribution that describes the variability in the response variable at fixed levels of the predictor variable.</u>

4.1.3 The regression procedure utilizes experimental or observational data to estimate the parameters defining a regression model and their precision. Diagnostic procedures are utilized to assess the resulting model fit and can suggest other models for improved prediction performance.

4.1.4 The regression model can be useful for developing process knowledge through description of the variable relationship, in making predictions of future values, and in developing control methods for the process generating values of the variables.

4.2 Section 5 in this standard deals with the simple linear regression model using a straight line mathematical relationship between the two variables where variability of the response variable over the range of values of the predictor variable is described by a normal distribution with constant variance. Appendix X1 provides supplemental information.

#### 5. Straight Line Regression and CorrelationSimple Linear Regression Analysis

5.1 *Two Variables*—<u>Simple Linear Regression Model</u>: The data set includes two variables, X and Y, measured over a collection of sampling units, experimental units or other type of observational units. Each variable occurs the same number of times and the two variables are paired one to one. Data of this type constitute a set of *n* ordered pairs of the form  $(x_i, y_i)$ , where the index variable (i) runs from 1 through *n*.

5.1.1 Select the response variable Y is always to be and the predictor variable *treatedX*, as a random variable. The predictor X may be either a random variable sampled from a population with an error that is negligible compared to the error of is assumed to have known values with little or no measurement error. The response  $Y_{Y}$  or values chosen as in the design of an experiment where the values represent levels that are fixed and without error. We refer to has a distribution of values for a given X as the independent variable and value, and this distribution is defined for all  $Y_X$  as the dependent variable in a given range.

5.1.2 The practitioner typically wants to see if a relationship exists between regression function for X and Y. In theory, many different types of relationships can occur between X and Y. The most common is a simple linear relationship of the form<u>the straight</u> Y<u>line</u> =  $\alpha$ relationship is  $Y = \beta_0 + \beta_1 X + \beta$ . The Xtwo +  $\varepsilon$ , where  $\alpha$  parameters for the function are the intercept  $\beta_0$  and  $\beta$  are model<u>the</u> slope  $\beta_1$  coefficients and  $\varepsilon$  is a random error term representing variation in the observed. The intercept is the value of Y at given when X, X and is assumed to have a mean of 0 and some unknown standard deviation  $\sigma$ . A statistical analysis that seeks to determine a linear relationship between a dependent variable, = 0, but Y, and a single independent variable, X, is called simple linear regression. In this type of analysis it is assumed that the error structure is normally distributed with mean 0 and some unknown variance  $\sigma$ this parameter may not be of practical interest when the  $\frac{2}{2}$  throughout the range of X and S Y.far Further, the errors are uncorrelated with each other. This will be assumed removed from zero. The slope is the amount of incremental change in *throughout* Y the remainder of this section.units for a unit change in X.

5.1.3 The regression problem is<u>statistical distribution for</u>  $t \sigma \underline{Y}$  determine estimates of the coefficients  $\alpha$  and  $\beta$  that "best" fit the datais assumed to be a normal (Gaussian) distribution having a mean of  $\beta_0 + \beta_1 \underline{X}$  and allow estimation of  $\sigma$ . An additional measure of association, the correlation coefficient,  $\rho$ , can also be estimated from this type of data which indicates the strength of the linear relationship between with a standard deviation  $\sigma$ . X and Y. The sample correlation coefficient, simple linear regression regre

<sup>&</sup>lt;sup>3</sup> The boldface numbers in parentheses refer to a list of references at the end of this standard.



the estimate of then stated as  $\underline{Y = \beta_0 + \beta_1 X + \epsilon p}$ . The square of the correlation coefficient, where  $\epsilon$  is a random error rthat<sup>2</sup>, is called the coefficient of determination and has additional meaning for the is normally distributed with mean zero and standard deviation  $\sigma$  (variance  $\sigma^2$  linear relationship between ).X and Y.

5.1.4 When a suitable model is found, it may An example of a linear regression model is depicted in Fig. 1 be used to estimate the mean response at a given value over a range of X or from 0 to predict 40 the X range of future units. Normal distributions of response Y values from a given with  $\sigma = 1.3 \ X.Y$  units are depicted at  $X = 10, 20, \text{ and } 30 \ X$  units.

## iTeh Standards (https://standards.iteh.ai) Document Preview

ASTM E3080-17

https://standards.iteh.ai/catalog/standards/sist/a81aff10-b71b-46fe-b30c-add5daed0bb3/astm-e3080-17



FIG. 1 Graphical Depiction of a Straight Line Regression Model

### **E3080 – 17**

5.2 *Method of Least Squares*—*Estimating Regression Model Parameters:* The methodology considered in this standard and used to estimate the model parameters  $\alpha$  and  $\beta$  is called the method of least squares. The form of the best fitting line will be denoted as Y = a + bX, where *a* and *b* are the estimates of  $\alpha$  and  $\beta$  respectively. The *i*th observed values of *X* and *Y* are denoted as  $x_i$  and  $y_i$ . The estimate of *Y* at  $X = x_i$  is written  $\hat{y}_i = a + bx_i$ . The "hat" notation over the  $y_i$  variable denotes that this is the estimated mean or predicted value of *Y* for a given *x*.

5.2.1 The least squares best fitting line is one that minimizes the sum of the squared deviations from the line to the observed  $y_i$  values. Note that these are vertical distances. Analytically, this sum of squared deviations is of the form:

$$S(a, b) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
(1)

5.2.1 The sum model parameters  $\beta_0$ , and  $\beta_1$  of squares, , are estimated from a sample of data consisting of n pairs of values designated as ( $S_rX_i$ ,  $isY_i$  written as a function), with the sample number i ranging from 1 through n. The data can arise in two different ways. Observational data consists of aX and b:Y Minimizing this function involves taking partial derivatives values measured on a set of  $S_n$  with respect to random samples. Experimental data consists of aY and values measured on n experimental units with b:X. This will result in two linear equations that are then solved simultaneously for values set at fixed values. In both cases the aY and values b.may. The resulting solutions are functions of the (have measurement error, but the  $xX_i$ , y values, y v

5.2.2 The regression line parameters  $\beta_0$ , and  $\beta_1$  are estimated by the method of least squares, which finds their corresponding estimates  $b_0$  and  $b_1$  that minimize the sum of the squares of the vertical distances between the  $Y_i$  values and their respective line values at  $X_i$ . (For a further discussion of the least squares method, see X1.1.2.)

5.2.3 Several algebraically equivalent formulas for the least squares solutions are found in the literature. The following describes one convenient form of the solution. First define sums of squares Calculate the following statistics from the  $SX_{xx}$  and  $SY_{yy}$  and the sum of cross products values in the data set.  $S_{xy}$  as follows:

$$S_{XX} = (n - 1)s_x^2 = \sum_{i=1}^{n} (x_1 - \bar{x})^2$$
(2)

$$S_{YY} = (n - 1)s_y^2 = \sum_{i=1}^n (y_i - \bar{y})^2$$
(3)

$$S_{XY} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} (x_i - \bar{x})y_i$$
(4)

Note that in Eq 2 and Eq 3,  $s_x$  and  $s_y$  are the ordinary sample standard deviations of the X and Y data respectively. The last expression in Eq 4 follows from the middle expression because  $\sum_{i=1}^{n} (x_i - \bar{x})\bar{y} = 0$ .

5.2.3.1 Calculate the averages of X and Y: lards/sist/a81aff10-b71b-46fe-b30c-add5daed0bb3/astm-e3080-17

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \tag{1}$$

$$\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n} \tag{2}$$

From the least squares solution, the slope estimate is calculated as:

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) y_i}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{S_{XY}}{S_{XX}}$$
(5)

5.2.3.2 Calculate the sums of squared deviations  $S_{XX}$  and  $S_{YY}$  of X and Y from their respective averages and the sum of cross products  $S_{XY}$  of the X and Y deviations from their averages:

$$S_{XX} = \sum_{i=1}^{\infty} (X_i - \bar{X})^2$$
(3)

$$S_{YY} = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$
(4)

$$S_{XY} = \sum_{i=1}^{n} \left( X_i - \bar{X} \right) \left( Y_i - \bar{Y} \right)$$
(5)

 $S_{XX}$  is a known fixed constant.  $S_{YY}$  and  $S_{XY}$  are random variables.

Once *b* is determined, the intercept term is calculated from:

| $a = \bar{y} - b\bar{x}$                                          | (6) |
|-------------------------------------------------------------------|-----|
| 5.2.3.3 The least squares solution gives the parameter estimates: |     |
| h - S / S                                                         | (6  |

E3080 - 17

$$b_0 = \bar{Y} - b_1 \bar{X} \tag{7}$$

 $[S_{YY}$  is not used here but will be used in subsequent sections.]

5.2.4 The *fitted values* $\hat{Y}_i$  for each data point  $Y_i$  are calculated from the estimated regression function as:

$$\hat{Y}_i = b_0 + b_1 X_i \tag{8}$$

5.2.5 The residuale<sub>i</sub> is the difference between the response data point  $Y_i$  and its fitted value  $\hat{Y}_i$ :

$$e_i = Y_i - \hat{Y}_i \tag{9}$$

<u>Residuals are graphically the vertical distances on the scatter plot between the response data points  $Y_i$  and the estimated regression line.</u>

5.2.6 The estimates  $s^2$  of the variance  $\sigma^2$  and s of the standard deviation  $\sigma$  of the Y distribution are calculated as the sum of the squared residuals divided by their degrees of freedom:

$$s^{2} = \frac{\sum_{i=1}^{n} e_{i}^{2}}{(n-2)} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} / (n-2)$$
(10)

$$=\sqrt{s^2}$$
(11)

These estimates have n - 2 degrees of freedom because of prior estimation of two parameters, the slope and intercept of the line, which removed two degrees of freedom from the data set of n data points prior to calculation of the residuals.

5.2.7 *Regression Analysis Procedure with Example*—The steps in the regression analysis procedure for the simple linear model, that are illustrated in the example below, are as follows:

(1) Choose the predictor variable X and response variable Y.

(2) Obtain data pairs of X and Y from available data or by conducting an experiment.

(3) Evaluate the distribution of the predictor variable and the XY relationship using plots.

(4) If the model is supported by the data plots, estimate the model parameters from the data.

(5) Evaluate the fitted model against the model assumptions.

(6) Use the regression model for future prediction of Y from X.

5.2.7.1 A data set from Duncan, Ref. (3) lists measurements of shear strength (inch-pounds) and weld diameter (mils) measured on 10 random test specimens, so this is an observational data set with n = 10 pairs. Regression analysis will be used to investigate the relationship between weld diameter and shear strength, with the objective of predicting shear strength Y from weld diameter X. The weld diameters are considered to be measured with small error. The data are listed in Table 1.

5.2.7.2 A dot plot of the X data is shown as Fig. 2, and the plot indicated that the data was spread out fairly evenly across the range of 190-270 mils and some of the parts had the same diameters.

5.2.7.3 A scatter plot of the data is recommended as a first or concurrent step for a visual look at the relationship, and most computer packages have this as an option. This is a plot of Y (on the vertical axis) versus X (on the horizontal axis) for each data pair. If a straight line relationship exists, the cluster of points will appear to be elongated in a particular direction along a straight line, and the plot will visually reveal any curvature or any other deviations from a straight line relationship, as well as any outlying data points. The estimated regression line can also be included on the plot to give a visual impression of the fit of the model to the data.

The scatter plot for this example is shown in Fig. 3. The shear strength appears to be increasing in a linear fashion with weld diameter. There is some scatter but no apparent outlying data points.

5.2.7.4 The calculations, with equation numbers for each calculation, are shown in Table 1. The averages of X and Y are respectively 233.9 mils and 975.0 inch-pounds. The deviations of X and Y from their averages are listed for each observation, and these are used to calculate values of the statistics  $S_{XX}$ ,  $S_{YY}$ , and  $S_{XY}$ . The least squares estimates of the slope and intercept are calculated, resulting in the estimated model equation giving fitted values  $\hat{Y}_i$ =-569.47+6.898  $X_i$ , and these values are listed for each observation. The residuals  $e_i = Y_i = \hat{Y}_i$  are also listed for each observation. Estimates of the variance and standard deviation of the Y distribution are calculated from squares of the residuals. The estimated standard deviation is 99.90 inch-pounds.

5.2.7.5 The least squares straight line is depicted with the scatter plot in Fig. 3, and indicates that a straight line model appears to give a reasonable fit to this data set. Some additional comments from Table 1 are:



|                                                                                                                                                                                                                                                                                                               |                                                                                          |                                                                                                                                                                                                                                                                                                                             | IABLE 1                                                                                                                | Weld Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ' (x) and Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Strength (                                                                                         | <del>y)</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                               |                                                                                          | i                                                                                                                                                                                                                                                                                                                           | <b>X</b> 7                                                                                                             | <b>∀</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d <sub>ī</sub> =x <sub>ī</sub> -y <sub>ī</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × <sub>ī</sub> —x⁻                                                                                 | <del>(x₁–x⁻)y</del> ₁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | +                                                                                                                                                                                                                                                                                                                           | <del>190</del>                                                                                                         | -680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 490.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -33.9                                                                                              | -23,052.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | 2                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                    | -800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 600.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -23.9                                                                                              | <del>-19,120.0</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | 3                                                                                                                                                                                                                                                                                                                           | <del>209</del>                                                                                                         | <del>-780</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>571.0</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>-14.9</del>                                                                                   | -11,622.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | 4                                                                                                                                                                                                                                                                                                                           | <del>215</del>                                                                                                         | <del>- 885</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 670.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | 5                                                                                                                                                                                                                                                                                                                           | <del>215</del>                                                                                                         | <del>- 975</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 760.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>-8.9</del>                                                                                    | <del>-8,677.5</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | 6                                                                                                                                                                                                                                                                                                                           | <del>215</del>                                                                                                         | <del>1025</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    | <del>9,122.5</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | 7                                                                                                                                                                                                                                                                                                                           | <del>230</del>                                                                                                         | <del>1100</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>-870.0</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>-6.1</del>                                                                                    | <del>6,710.0</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | 8                                                                                                                                                                                                                                                                                                                           | <del>250</del>                                                                                                         | <del>1030</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>-780.0</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>-26.1</del>                                                                                   | <del>-26,883.0</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | 9                                                                                                                                                                                                                                                                                                                           | <del>265</del>                                                                                                         | <del>1175</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <u>-910.0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>41.1</del>                                                                                    | <del>48,292.5</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | 10                                                                                                                                                                                                                                                                                                                          | <del>250</del>                                                                                                         | <del>1300</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>-1050.0</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>-26.1</del>                                                                                   | -33,930.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | average                                                                                                                                                                                                                                                                                                                     | 223.9                                                                                                                  | <del>- 975.0</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | stdev (8                                                                                                                                                                                                                                                                                                                    | <b>5)</b> 24.196                                                                                                       | <del>191.645</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>170.987</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | <u>S<sup>2</sup></u>                                                                                                                                                                                                                                                                                                        | <del>585.43</del>                                                                                                      | <del>3 36,727.778</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>29,236.544</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                             |
|                                                                                                                                                                                                                                                                                                               |                                                                                          | TABLE 1                                                                                                                                                                                                                                                                                                                     | Data and Ca                                                                                                            | Iculations for S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | traight Line Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | egression I                                                                                        | Model Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                             |
| Sample, i                                                                                                                                                                                                                                                                                                     | $\underline{X}_i$                                                                        | <u>Y</u> <sub>i</sub>                                                                                                                                                                                                                                                                                                       | $X_i - \bar{X}$                                                                                                        | $Y_i - \overline{Y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ŷ <sub>i</sub> ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Results                                           | EQ                          |
| 1                                                                                                                                                                                                                                                                                                             | 190                                                                                      | 680                                                                                                                                                                                                                                                                                                                         | -33.9                                                                                                                  | -295.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 741.2 -61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .2                                                                                                 | S <sub>xx</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5268.90                                           | Eq 3                        |
| 2                                                                                                                                                                                                                                                                                                             | 200                                                                                      | 800                                                                                                                                                                                                                                                                                                                         | -23.9                                                                                                                  | -175.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 310.1 -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).1                                                                                                | $\overline{S_{YY}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 330550.00                                         | Eq 4                        |
| 3                                                                                                                                                                                                                                                                                                             | 209                                                                                      | 780                                                                                                                                                                                                                                                                                                                         | -14.9                                                                                                                  | -195.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 372.2 -92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.2                                                                                                | $\overline{S_{XY}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36345.00                                          | Eq 5                        |
|                                                                                                                                                                                                                                                                                                               | 215                                                                                      | 885                                                                                                                                                                                                                                                                                                                         | -8.9                                                                                                                   | -90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 913.6 -28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.6                                                                                                | Slope, $b_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.8980                                            | Eq 6                        |
| 4                                                                                                                                                                                                                                                                                                             |                                                                                          | 000                                                                                                                                                                                                                                                                                                                         |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | <b>F a 7</b>                |
| <u>4</u><br>5                                                                                                                                                                                                                                                                                                 | 215                                                                                      | 975                                                                                                                                                                                                                                                                                                                         | -8.9                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 913.6 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .4                                                                                                 | Intercept, bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -569.47                                           | Eq 7                        |
| 4<br>5<br>6                                                                                                                                                                                                                                                                                                   | 215<br>215                                                                               | <u>975</u><br>1025                                                                                                                                                                                                                                                                                                          | -8.9<br>-8.9                                                                                                           | 0.0 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 913.6 61<br>913.6 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .4                                                                                                 | Intercept, b <sub>o</sub><br>Variance, s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>-569.47</u><br>9980.16                         | Eq 10                       |
| 4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                              | 215<br>215<br>230                                                                        | 975<br>1025<br>1100                                                                                                                                                                                                                                                                                                         | -8.9<br>-8.9<br>6.1                                                                                                    | 0.0<br>50.0<br>125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 913.6     61       913.6     111       917.1     82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>.4</u><br><u>.4</u><br>2.9                                                                      | Intercept, $b_0$<br>Variance, $s^2$<br>St. Dev., $s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>-569.47</u><br><u>9980.16</u><br>99.90         | <u>Eq 7</u><br>Eq 10        |
| 4<br>5<br>6<br>7<br>8                                                                                                                                                                                                                                                                                         | 215<br>215<br>230<br>250                                                                 | 975<br>1025<br>1100<br>1030                                                                                                                                                                                                                                                                                                 | -8.9<br>-8.9<br>6.1<br>26.1                                                                                            | 0.0<br>50.0<br>125.0<br>155.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 913.6     61       913.6     111       017.1     82       155.0     -125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .4<br>.4<br>2.9<br>5.0                                                                             | Intercept, $b_0$<br>Variance, $s^2$<br>St. Dev., $s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>-569.47</u><br><u>9980.16</u><br><u>99.90</u>  | <u>Eq 7</u><br>Eq 10        |
| 4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                                                                                                                                    | 215<br>215<br>230<br>250<br>250                                                          | 975<br>1025<br>1100<br>1030<br>1300                                                                                                                                                                                                                                                                                         | -8.9<br>-8.9<br>6.1<br>26.1<br>26.1                                                                                    | 0.0         1           50.0         1           125.0         1           55.0         1           325.0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 913.6     61       913.6     111       913.6     111       913.6     111       913.6     -111       913.6     -125       155.0     -125       155.0     145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .4<br>.4<br>2.9<br>5.0<br>5.0                                                                      | Intercept, $b_0$<br>Variance, $s^2$<br>St. Dev., $s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>-569.47</u><br><u>9980.16</u><br><u>99.90</u>  | <u>Eq 7</u><br>Eq 10        |
| $ \begin{array}{r}                                     $                                                                                                                                                                                                                                                      | 215<br>215<br>230<br>250<br>250<br>265                                                   | 975<br>1025<br>1100<br>1030<br>1300<br>1175                                                                                                                                                                                                                                                                                 | -8.9<br>-8.9<br>-6.1<br>26.1<br>26.1<br>14.1                                                                           | 0.0           50.0           125.0           125.0           1           325.0           1           200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 913.6         61           913.6         111           917.1         82           155.0         -125           155.0         145           258.5         -83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .4<br>.4<br>2.9<br>5.0<br>5.0<br>3.5                                                               | Intercept, b <sub>o</sub><br>Variance, s <sup>2</sup><br>St. Dev., s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>-569.47</u><br><u>9980.16</u><br><u>99.90</u>  | <u>Eq 7</u><br>Eq 10        |
|                                                                                                                                                                                                                                                                                                               | 215<br>215<br>230<br>250<br>265<br>X                                                     | 975<br>1025<br>1100<br>1030<br>1300<br>1175                                                                                                                                                                                                                                                                                 | -8.9<br>-8.9<br>6.1<br>26.1<br>26.1<br>14.1                                                                            | 0.0         1           50.0         1           125.0         1           325.0         1           200.0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 913.6         61           913.6         111           917.1         82           155.0         -125           155.0         145           258.5         -83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .4<br>.4<br>2.9<br>3.0<br>3.0<br>3.5                                                               | Intercept, b <sub>o</sub><br>Variance, s <sup>2</sup><br>St. Dev., s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>-569.47</u><br><u>9980.16</u><br><u>99.90</u>  | <u>Eq 10</u>                |
| 4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                                                                                                                              | 215<br>215<br>230<br>250<br>265<br><u>X</u><br>223.9                                     | <u>975</u><br><u>1025</u><br><u>1100</u><br><u>1300</u><br><u>1300</u><br><u>1175</u><br><u><u>¥</u><br/>975.0</u>                                                                                                                                                                                                          | -8.9<br>-8.9<br>6.1<br>26.1<br>26.1<br>14.1                                                                            | 0.0<br>50.0<br>125.0<br>125.0<br>1<br>325.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>1<br>200.0<br>1<br>1<br>200.0<br>1<br>1<br>1<br>1<br>200.0<br>1<br>1<br>1<br>200.0<br>1<br>1<br>200.0<br>1<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 913.6         61           913.6         61           913.6         111           917.1         82           155.0         -125           155.0         145           258.5         -83           975.0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .4<br>.4<br>2.9<br>5.0<br>5.0<br>3.5                                                               | Intercept, b <sub>o</sub><br>Variance, s <sup>2</sup><br>St. Dev., s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>-569.47</u><br><u>9980.16</u><br><u>99.90</u>  | <u>Eq 1</u><br><u>Eq 10</u> |
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>Average<br>Equation                                                                                                                                                                                                                                                       | 215<br>215<br>230<br>250<br>265<br>265<br><u>X</u><br>223.9<br>Eq 1                      | 975<br>1025<br>1100<br>1030<br>1300<br>1175<br><u>×</u><br>975.0<br><u>Eq 2</u>                                                                                                                                                                                                                                             | -8.9<br>-8.9<br>6.1<br>26.1<br>26.1<br>14.1                                                                            | 0.0<br>50.0<br>125.0<br>125.0<br>1<br>325.0<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 913.6     61       913.6     111       913.6     111       917.1     82       155.0     -125       155.0     145       258.5     -83       975.0     6       98     6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .4<br>.4<br>.9<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       | Intercept, b <sub>o</sub><br>Variance, s <sup>2</sup><br>St. Dev., s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - <u>569.47</u><br><u>9980.16</u><br><u>99.90</u> |                             |
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>Average<br>Equation                                                                                                                                                                                                                                                       | 215<br>215<br>230<br>250<br>265<br>265<br><u>x</u><br>223.9<br>Eq 1                      | 975<br>1025<br>1100<br>1030<br>1300<br>1300<br>1175<br>¥<br>975.0<br>Eq 2                                                                                                                                                                                                                                                   | - <u>8.9</u><br>- <u>8.9</u><br><u>6.1</u><br><u>26.1</u><br><u>26.1</u><br><u>14.1</u><br><u>0.0</u>                  | 0.0<br>50.0<br>125.0<br>125.0<br>1<br>325.0<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 913.6     61       913.6     111       917.1     82       155.0     -125       155.0     145       258.5     -83       975.0     6       6     61       975.0     6       6     6       975.0     6       975.0     6       975.0     6       975.0     6       975.0     6       975.0     6       975.0     6       975.0     6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .4<br>.4<br>.9<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       | Intercept, b <sub>o</sub><br>Variance, s <sup>2</sup><br>St. Dev., s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - <u>569.47</u><br><u>9980.16</u><br><u>99.90</u> |                             |
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>Average<br>Equation                                                                                                                                                                                                                                                       | 215<br>215<br>230<br>250<br>265<br>265<br>265<br>265<br><u>X</u><br>223.9<br><u>Eq 1</u> | 975<br>1025<br>1100<br>1030<br>1300<br>1300<br>1175<br><u>¥</u><br>975.0<br><u>Eq 2</u>                                                                                                                                                                                                                                     | - <u>8.9</u><br>- <u>8.9</u><br><u>6.1</u><br><u>26.1</u><br><u>14.1</u><br>- <u>0.0</u>                               | 0.0<br>50.0<br>125.0<br>125.0<br>1<br>325.0<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>10<br>20000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 913.6     61       913.6     111       917.1     82       155.0     -125       155.0     145       258.5     -83       975.0     6       61     8       67     6       61     6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .4<br>.4<br>.9<br>.0<br>.0<br>.0<br>.0<br>.5<br>.5                                                 | Intercept, b <sub>0</sub><br>Variance, s <sup>2</sup><br>St. Dev., s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - <u>569.47</u><br><u>9980.16</u><br><u>99.90</u> |                             |
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>Average<br>Equation                                                                                                                                                                                                                                                       | 215<br>215<br>230<br>250<br>265<br>265<br>265<br>223.9<br>Eq 1                           | $     \begin{array}{r}         \frac{975}{1025} \\         \frac{1000}{1030} \\         \frac{1030}{1300} \\         \frac{1300}{1175} \\         \underline{1}75 \\         \underline{7} \\         \frac{975.0}{\underline{Eq.2}} \\         \underline{-6.898} \\         \underline{-569.468} \\         \end{array} $ | $     \frac{-8.9}{-8.9} \\     \frac{-8.9}{6.1} \\     \frac{26.1}{14.1} \\     \hline                               $ | 0.0<br>50.0<br>125.0<br>125.0<br>1<br>325.0<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113.6     61       113.6     111       115.0     -125       155.0     -125       155.0     -125       155.0     -125       258.5     -83       275.0     6       275.0     6       2975.0     6       2975.0     6       2975.0     6       2975.0     6       2975.0     6       2975.0     6       200     6       201     7       202     7       203     7       204     7       205     6       205     6       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       20                                                                                                                                                                                                                                                                                 | .4<br>.4<br>.9<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       | $\frac{\frac{1}{1} + \frac{1}{1} + $ | - <u>569.47</u><br><u>9980.16</u><br><u>99.90</u> |                             |
| 4       5       6       7       8       9       10         Average       Equation       a       a       Sxx                                                                                                                                                                                                   | 215<br>215<br>230<br>250<br>265<br>265<br>265<br>223.9<br>Eq 1                           | <u>975</u><br><u>1025</u><br><u>1100</u><br><u>1030</u><br><u>1300</u><br><u>1300</u><br><u>1175</u><br><u>¥</u><br><u>975.0</u><br><u>Eq 2</u><br><u>6.898</u><br><u>-569.468</u><br><u>5,268</u>                                                                                                                          | <u>-8.9</u><br><u>-8.9</u><br><u>6.1</u><br><u>26.1</u><br><u>26.1</u><br><u>14.1</u><br><u>0.0</u>                    | 0.0<br>50.0<br>125.0<br>125.0<br>325.0<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 913.6     61       913.6     111       913.6     111       917.1     82       155.0     -125       155.0     145       258.5     -83       975.0     6       6     6       975.0     6       6     6       975.0     6       6     6       975.0     6       6     6       975.0     6       975.0     6       975.0     6       975.0     6       975.0     6       975.0     7       97     6       97     6       97     6       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7       97     7                                                                                                                                                                                                                                                                                                              | .4<br>.4<br>.2<br>.9<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | $\frac{\frac{1}{1} + \frac{1}{1} + $ | - <u>569.47</u><br><u>9980.16</u><br><u>99.90</u> |                             |
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>10<br>Average<br>Equation<br><b>b</b><br><b>a</b><br><b>b</b><br><b>a</b><br><b>b</b><br><b>a</b><br><b>b</b><br><b>b</b><br><b>c</b><br><b>b</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b> | 215<br>215<br>230<br>250<br>265<br>265<br>265<br>265<br>223.9<br><u>Eq 1</u>             | 975<br>1025<br>1100<br>1030<br>1300<br>1300<br>1175<br><u>¥</u><br>975.0<br><u>Eq 2</u><br><u>6.898</u><br><u>-569.468</u><br><u>5,268</u><br>330,550                                                                                                                                                                       | - <u>8.9</u><br>- <u>8.9</u><br><u>6.1</u><br><u>26.1</u><br><u>26.1</u><br><u>14.1</u><br><u>0.0</u>                  | 0.0<br>50.0<br>125.0<br>125.0<br>1<br>325.0<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>1<br>200.0<br>1<br>200.0<br>10<br>1<br>200.0<br>1<br>200.0<br>10<br>200.0<br>1<br>200.0<br>10<br>200.0<br>10<br>2000<br>1<br>200.0<br>10<br>1<br>200.0<br>10<br>1<br>200.0<br>10<br>1<br>200.0<br>10<br>1<br>200.0<br>10<br>1<br>200.0<br>10<br>1<br>200.0<br>10<br>1<br>200.0<br>10<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>200.0<br>1<br>1<br>20000000000 | 113.6     61       113.6     111       115.0     -125       155.0     -125       155.0     -125       155.0     -125       155.0     -63       258.5     -83       275.0     6       275.0     6       275.0     6       275.0     6       275.0     6       275.0     6       275.0     6       275.0     6       275.0     6       275.0     6       275.0     7       200     7       201     7       202     7       203     7       204     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7       205     7 <t< td=""><td>.4<br/>.4<br/>.9<br/>.0<br/>.0<br/>.0<br/>.0<br/>.0<br/>.0<br/>.0<br/>.0<br/>.0<br/>.0<br/>.0<br/>.0<br/>.0</td><td>Intercept, b<sub>0</sub><br/>Variance, s<sup>2</sup><br/>St. Dev., s</td><td>-<u>569.47</u><br/><u>9980.16</u><br/><u>99.90</u></td><td></td></t<> | .4<br>.4<br>.9<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       | Intercept, b <sub>0</sub><br>Variance, s <sup>2</sup><br>St. Dev., s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - <u>569.47</u><br><u>9980.16</u><br><u>99.90</u> |                             |



FIG. 2 Dot Plot of the Predictor Value X

(1) The least squares estimated model equation is Y = -569.47 + 6.898 X. Clearly the negative intercept is not a plausible value for shear strength. This is apparently due to the fact that the data are far removed from the origin (0, 0). It is possible that there is some nonlinear behavior in the relationship approaching the origin.

(2) The averages of the deviations of X and Y from their averages are zero, and the average of the residuals are zero. These results follow from the property that sums of deviations from averages are zero.

(3) The average of the fitted values of Y is the same as the average of the Y data.

5.3 Example—An example for this kind of data and the associated basic calculations is shown in Table 1. This data is taken from Duncan (3), and shows the relationship between the measurement of shear strength, Y, and weld diameter, X, for 10 random specimens. Values for the estimated slope and intercept are b = 6.898 and a = -569.468. Fig. 2 shows the scatter plot and associated least squares linear fit.

In Eq.5, the slope estimate b is seen as a weighted average of the  $y_i$  where the weights,  $w_i$ , are defined as:

$$w_i = \frac{(x_i - \bar{x})}{S_{\overline{XX}}} \tag{7}$$

Values of  $x_i$  furthest from the average will have the greatest impact on the associated weight applied to observation  $y_i$  and on the numerical determination of the slope b.



5.3 Correlation Coefficient—Evaluation of the Model: The population correlation coefficient, or Pearson Product Moment Correlation Coefficient,  $\rho$ , is a dimensionless parameter intended to measure the strength of a linear relationship between two variables. The estimated sample correlation coefficient, r, for a set of paired data  $(x_i, y_i)$  is calculated as:

$$\frac{\sum_{i=1}^{\infty} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y} = \frac{\sum_{i=1}^{\infty} (x_i - \bar{x})y_i}{(n-1)s_x s_y}$$
(8)

In Eq.8, the quantity  $\frac{\sum_{i=1}^{n} (x - \bar{x})(y - \bar{y})}{(n-1)}$  is referred to as the sample co-variance. Here again, the mean of y disappears from the



FIG. 59 Regression Plot with 95 % Confidence and Prediction Intervals

right side of Eq 8, because  $\sum_{i=1}^{n} (x - \bar{x}) \bar{y} = 0$ .

5.3.1 An alternative formula for r uses the standard deviation of the paired differences (This section discusses model evaluation through measures of association and plots of the residuals to check $d_i = for ydepartures_i - from xthe_i$ ). Note that it does not matter in what order we calculate these differences. Either model assumptions and the presence of data outliers.  $d_i = y_i - x_i$  or  $d_i = x_i - y_i$  will give the same result:

$$\frac{1}{2s_xs_y} = \frac{s_x^2 + s_y^2 - s_d^2}{2s_xs_y}$$
(9)

The correlation coefficient for the data in Table 1 using Eq 8 and Eq 9 are:

$$=\frac{36,345}{(10,-1)(24,125)(101,545)}=0.871$$

$$=\frac{24.196^2+191.645^2-170.897^2}{2(24.106)(101.645)}=0.871$$

https://standards.tteh.a/catalog/standards/sist/a81a/f0=671b-46fe-b30c-add5daed0bb3/astm-e3080-17

5.3.2 The value of the correlation coefficient is always between -1 and +1. If *r* is negative (*y* decreases as *x* increases) then a line fit to the data will have a negative slope; similarly, positive values of *r* (*y* increased as *x* increases) are associated with a positive slope. Values of *r* near 0 indicate no linear relationship so that a line fit to the data will have a slope near 0. In cases where the (*x*,*y*) data have an r = -1 or r = +1, the relationship between *x* and *y* is perfectly linear. An *r* value near to +1 or -1 indicate that a line may provide an adequate fit to the data but does not "prove" that the relationship is linear since other models may provide a better fit (for example, a quadratic model). As values of *r* become closer to the extremes (-1 and +1) a line provides a stronger explanation of the relationship. Fig. 2 shows examples of what correlated data look like for several values of *r*. *Measures of Association Between X and Y*:

5.3.2.1 The sample correlation coefficient is a dimensionless statistic intended to measure the strength of a linear relationship between two variables. The estimated correlation coefficient, r, from a set of paired data  $(X_i, Y_i)$  is calculated from three statistics,  $S_{XX}, S_{YY}$ , and  $S_{XY}$ :

$$r = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}} \tag{12}$$

The value of the correlation coefficient ranges between -1 and +1. The sign of r is the same as the sign of slope estimate  $b_1$ . Values of r near 0 indicate a weak or nonexistent straight line relationship. An r value closer to either +1 or -1 indicates that a straight line provides an ever stronger explanation of the relationship. Fig. 4 shows examples of scatter plots that appear for selected values of r.

5.3.2.2 The coefficient of determination is the squared value of the correlation coefficient with symbol  $r^2$ . It measures the proportion of variation in the Y data explained by the predictor variable X.

5.3.2.3 For the example the sample correlation coefficient is:

$$r = \frac{36345}{\sqrt{(330550)(5268.9)}} = 0.8709$$