
Designation: E3080 − 17 An American National Standard

Standard Practice for
Regression Analysis1

This standard is issued under the fixed designation E3080; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers regression analysis methodology
for estimating, evaluating, and using the simple linear regres-
sion model to define the statistical relationship between two
numerical variables.

1.2 The system of units for this practice is not specified.
Dimensional quantities in the practice are presented only as
illustrations of calculation methods. The examples are not
binding on products or test methods treated.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety, health, and environmental practices and deter-
mine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

E178 Practice for Dealing With Outlying Observations
E456 Terminology Relating to Quality and Statistics
E2586 Practice for Calculating and Using Basic Statistics

3. Terminology

3.1 Definitions—Unless otherwise noted, terms relating to
quality and statistics are as defined in Terminology E456.

3.1.1 coeffıcient of determination, r2, n—square of the
correlation coefficient.

3.1.2 degrees of freedom, n—the number of independent
data points minus the number of parameters that have to be
estimated before calculating the variance. E2586

3.1.3 residual, n—observed value minus fitted value, when a
model is used.

3.1.4 predictor variable, X, n—a variable used to predict a
response variable using a regression model.

3.1.4.1 Discussion—Also called an independent or explana-
tory variable.

3.1.5 regression analysis, n—a statistical procedure used to
characterize the association between two numerical variables
for prediction of the response variable from the predictor
variable.

3.1.6 response variable, Y, n—a variable predicted from a
regression model.

3.1.6.1 Discussion—Also called a dependent variable.

3.1.7 sample correlation coeffıcient, r, n—a dimensionless
measure of association between two variables estimated from
the data.

3.1.8 sample covariance, sxy, n—an estimate of the associa-
tion of the response variable and predictor variable calculated
from the data.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 intercept, n—of a regression model, β0, the value of

the response variable when the predictor variable is zero.

3.2.2 regression model parameter, n—a descriptive constant
defining a regression model that is to be estimated.

3.2.3 residual standard deviation, n—of a regression model,
σ, the square root of the residual variance.

3.2.4 residual variance, n—of a regression model, σ2, the
variance of the residuals (see residual).

3.2.5 slope, n—of a regression model, β1, the incremental
change in the response variable due to a unit change in the
predictor variable.

3.3 Symbols:

b0 = intercept estimate (5.2.2)
b1 = slope estimate (5.2.2)
β0 = intercept parameter in model (5.1.2)
β1 = slope parameter in model (5.1.2)

1 This practice is under the jurisdiction of ASTM Committee E11 on Quality and
Statistics and is the direct responsibility of Subcommittee E11.10 on Sampling /
Statistics.
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E = general point estimate of a parameter (5.4.2)
ei = residual for data point i (5.2.5)
ε = residual parameter in model (5.1.3)
F = F statistic (X1.3.2)
h = index for any value in data range (5.4.5)
i = index for a data point (5.2.1)
n = number of data points (5.2.1)
r = sample correlation coefficient (5.3.2.1)
r2 = coefficient of determination (5.3.2.2)
S(b0,b1) = sum of squared deviations of Yi to the regression

line (X1.1.2)
sb1 = standard error of slope estimate (5.4.3)
sb0 = standard error of intercept estimate (5.4.4)
sE = general standard error of a point estimate (5.4.2)
σ = residual standard deviation (5.1.3)
s = estimate of σ (5.2.6)
σ2 = residual variance (5.1.3)
s2 = estimate of σ2 (5.2.6)
sX

2 = variance of X data (X1.2.1)
sY

2 = variance of Y data (X1.2.1)
SXX = sum of squares of deviations of X data from

average (5.2.3)
SXY = sum of cross products of X and Y from their

averages (5.2.3)
sXY = sample covariance of X and Y (X1.2.1)
sŶh = standard error of Ŷh (5.4.5)
sŶh~ind!

= standard error of future individual Y value (5.4.6)
SYY = sum of squares of deviations of Y data from

average (5.2.3)
t = Student’s t distribution (5.4.2)
X = predictor variable (5.1.1)
X̄ = average of X data (5.2.3)
Xh = general value of X in its range (5.4.5)
Xi = value of X for data point i (5.2.1)
Y = response variable (5.1.1)
Ȳ = average of Y data (5.2.3)
Ŷh~ind!

= predicted future individual Y for a value Xh (5.4.6)
Yi = value of Y for data point i (5.2.1)
Ŷh

= predicted value of Y for any value Xh (5.4.5)
Ŷ i

= predicted value of Y for data point i (5.2.4)

3.4 Acronyms:
3.4.1 ANOVA, n—Analysis of Variance

3.4.2 df, n—Degrees of Freedom

3.4.3 LOF, n—Lack of Fit

3.4.4 MS, n—Mean Square

3.4.5 MSE, n—Mean Square Error

3.4.6 MSR, n—Mean Square Regression

3.4.7 MST, n—Mean Square Total

3.4.8 PE, n—Pure Error

3.4.9 SS, n—Sum of Squares

3.4.10 SSE, n—Sum of Squares Error

3.4.11 SSR, n—Sum of Squares Regression

3.4.12 SST, n—Sum of Squares Total

4. Significance and Use

4.1 Regression analysis is a statistical procedure that studies
the statistical relationships between two or more variables Ref.

(1, 2).3 In general, one of these variables is designated as a
response variable and the rest of the variables are designated as
predictor variables. Then the objective of the model is to
predict the response from the predictor variables.

4.1.1 This standard considers a numerical response variable
and only a single numerical predictor variable.

4.1.2 The regression model consists of: (1) a mathematical
function that relates the mean values of the response variable
distribution to fixed values of the predictor variable, and (2) a
description of statistical distribution that describes the variabil-
ity in the response variable at fixed levels of the predictor
variable.

4.1.3 The regression procedure utilizes experimental or
observational data to estimate the parameters defining a regres-
sion model and their precision. Diagnostic procedures are
utilized to assess the resulting model fit and can suggest other
models for improved prediction performance.

4.1.4 The regression model can be useful for developing
process knowledge through description of the variable
relationship, in making predictions of future values, and in
developing control methods for the process generating values
of the variables.

4.2 Section 5 in this standard deals with the simple linear
regression model using a straight line mathematical relation-
ship between the two variables where variability of the
response variable over the range of values of the predictor
variable is described by a normal distribution with constant
variance. Appendix X1 provides supplemental information.

5. Simple Linear Regression Analysis

5.1 Simple Linear Regression Model:
5.1.1 Select the response variable Y and the predictor

variable X. The predictor X is assumed to have known values
with little or no measurement error. The response Y has a
distribution of values for a given X value, and this distribution
is defined for all X values in a given range.

5.1.2 The regression function for the straight line relation-
ship is Y5β01β1X. The two parameters for the function are the
intercept β0 and the slope β1. The intercept is the value of Y
when X = 0, but this parameter may not be of practical interest
when the range of X is far removed from zero. The slope is the
amount of incremental change in Y units for a unit change in X.

5.1.3 The statistical distribution for Y is assumed to be a
normal (Gaussian) distribution having a mean of β01β1X with
a standard deviation σ. The simple linear regression model is
then stated as Y5β01β1X1ε, where ε is a random error that is
normally distributed with mean zero and standard deviation σ
(variance σ2).

5.1.4 An example of a linear regression model is depicted in
Fig. 1 over a range of X from 0 to 40 X units. Normal
distributions of response Y with σ = 1.3 Y units are depicted at
X = 10, 20, and 30 X units.

3 The boldface numbers in parentheses refer to a list of references at the end of
this standard.
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5.2 Estimating Regression Model Parameters:
5.2.1 The model parameters β0, and β1, are estimated from

a sample of data consisting of n pairs of values designated as
(Xi, Yi), with the sample number i ranging from 1 through n.
The data can arise in two different ways. Observational data
consists of X and Y values measured on a set of n random
samples. Experimental data consists of Y values measured on n
experimental units with X values set at fixed values. In both
cases the Y values may have measurement error, but the X
values are assumed known with negligible measurement error.

5.2.2 The regression line parameters β0, and β1 are esti-
mated by the method of least squares, which finds their
corresponding estimates b0 and b1 that minimize the sum of the
squares of the vertical distances between the Yi values and their
respective line values at Xi. (For a further discussion of the
least squares method, see X1.1.2.)

5.2.3 Calculate the following statistics from the X and Y
values in the data set.

5.2.3.1 Calculate the averages of X and Y:

X̄ 5
(
i51

n

Xi

n
(1)

Ȳ 5
(
i51

n

Yi

n
(2)

5.2.3.2 Calculate the sums of squared deviations SXX and
SYY of X and Y from their respective averages and the sum of
cross products SXY of the X and Y deviations from their
averages:

SXX 5 (
i51

n

~Xi 2 X̄! 2
(3)

SYY 5 (
i51

n

~Yi 2 Ȳ! 2
(4)

SXY 5 (
i51

n

~Xi 2 X̄!~Yi 2 Ȳ! (5)

SXX is a known fixed constant. SYY and SXY are random
variables.

5.2.3.3 The least squares solution gives the parameter esti-
mates:

b1 5 SXY ⁄ SXX (6)

b0 5 Ȳ 2 b1X̄ (7)

[SYY is not used here but will be used in subsequent sections.]
5.2.4 The fitted values Ŷi for each data point Yi are calcu-

lated from the estimated regression function as:

Ŷ i 5 b01b1Xi (8)

5.2.5 The residual ei is the difference between the response
data point Yi and its fitted value Ŷ i:

ei 5 Yi 2 Ŷ i (9)

Residuals are graphically the vertical distances on the scatter
plot between the response data points Yi and the estimated
regression line.

5.2.6 The estimates s2 of the variance σ2 and s of the
standard deviation σ of the Y distribution are calculated as the
sum of the squared residuals divided by their degrees of
freedom:

s2 5
(
i51

n

ei
2

~n 2 2!
5 (

i21

n

~Yi 2 Ŷ i!
2

⁄ ~n 2 2! (10)

s 5 =s2 (11)

These estimates have n – 2 degrees of freedom because of
prior estimation of two parameters, the slope and intercept of
the line, which removed two degrees of freedom from the data
set of n data points prior to calculation of the residuals.

5.2.7 Regression Analysis Procedure with Example—The
steps in the regression analysis procedure for the simple linear
model, that are illustrated in the example below, are as follows:

FIG. 1 Graphical Depiction of a Straight Line Regression Model
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(1) Choose the predictor variable X and response variable
Y.

(2) Obtain data pairs of X and Y from available data or by
conducting an experiment.

(3) Evaluate the distribution of the predictor variable and
the XY relationship using plots.

(4) If the model is supported by the data plots, estimate the
model parameters from the data.

(5) Evaluate the fitted model against the model assump-
tions.

(6) Use the regression model for future prediction of Y
from X.

5.2.7.1 A data set from Duncan, Ref. (3) lists measurements
of shear strength (inch-pounds) and weld diameter (mils)
measured on 10 random test specimens, so this is an observa-
tional data set with n = 10 pairs. Regression analysis will be
used to investigate the relationship between weld diameter and
shear strength, with the objective of predicting shear strength Y
from weld diameter X. The weld diameters are considered to be
measured with small error. The data are listed in Table 1.

5.2.7.2 A dot plot of the X data is shown as Fig. 2, and the
plot indicated that the data was spread out fairly evenly across
the range of 190–270 mils and some of the parts had the same
diameters.

5.2.7.3 A scatter plot of the data is recommended as a first
or concurrent step for a visual look at the relationship, and
most computer packages have this as an option. This is a plot
of Y (on the vertical axis) versus X (on the horizontal axis) for
each data pair. If a straight line relationship exists, the cluster
of points will appear to be elongated in a particular direction
along a straight line, and the plot will visually reveal any
curvature or any other deviations from a straight line
relationship, as well as any outlying data points. The estimated
regression line can also be included on the plot to give a visual
impression of the fit of the model to the data.

The scatter plot for this example is shown in Fig. 3. The
shear strength appears to be increasing in a linear fashion with
weld diameter. There is some scatter but no apparent outlying
data points.

5.2.7.4 The calculations, with equation numbers for each
calculation, are shown in Table 1. The averages of X and Y are
respectively 233.9 mils and 975.0 inch-pounds. The deviations
of X and Y from their averages are listed for each observation,

and these are used to calculate values of the statistics SXX, SYY,
and SXY. The least squares estimates of the slope and intercept
are calculated, resulting in the estimated model equation giving
fitted values Ŷ i5-569.4716.898 Xi, and these values are listed for
each observation. The residuals ei5Yi5Ŷ i are also listed for
each observation. Estimates of the variance and standard
deviation of the Y distribution are calculated from squares of
the residuals. The estimated standard deviation is 99.90 inch-
pounds.

5.2.7.5 The least squares straight line is depicted with the
scatter plot in Fig. 3, and indicates that a straight line model
appears to give a reasonable fit to this data set. Some additional
comments from Table 1 are:

(1) The least squares estimated model equation is Y =
–569.47 + 6.898 X. Clearly the negative intercept is not a
plausible value for shear strength. This is apparently due to the
fact that the data are far removed from the origin (0, 0). It is
possible that there is some nonlinear behavior in the relation-
ship approaching the origin.

(2) The averages of the deviations of X and Y from their
averages are zero, and the average of the residuals are zero.
These results follow from the property that sums of deviations
from averages are zero.

(3) The average of the fitted values of Y is the same as the
average of the Y data.

5.3 Evaluation of the Model:
5.3.1 This section discusses model evaluation through mea-

sures of association and plots of the residuals to check for
departures from the model assumptions and the presence of
data outliers.

5.3.2 Measures of Association Between X and Y:
5.3.2.1 The sample correlation coefficient is a dimensionless

statistic intended to measure the strength of a linear relation-
ship between two variables. The estimated correlation
coefficient, r, from a set of paired data (Xi, Yi) is calculated
from three statistics, SXX, SYY, and SXY:

r 5
SXY

=SXXSYY

(12)

The value of the correlation coefficient ranges between –1
and +1. The sign of r is the same as the sign of slope estimate
b1. Values of r near 0 indicate a weak or nonexistent straight

TABLE 1 Data and Calculations for Straight Line Regression Model Example

Sample, i Xi Yi Xi2X̄ Yi2Ȳ Ŷ i
ei Statistics Results EQ

1 190 680 -33.9 -295.0 741.2 -61.2 SXX 5268.90 Eq 3
2 200 800 -23.9 -175.0 810.1 -10.1 SYY 330550.00 Eq 4
3 209 780 -14.9 -195.0 872.2 -92.2 SXY 36345.00 Eq 5
4 215 885 -8.9 -90.0 913.6 -28.6 Slope, b1 6.8980 Eq 6
5 215 975 -8.9 0.0 913.6 61.4 Intercept, b0 -569.47 Eq 7
6 215 1025 -8.9 50.0 913.6 111.4 Variance, s2 9980.16 Eq 10
7 230 1100 6.1 125.0 1017.1 82.9 St. Dev., s 99.90
8 250 1030 26.1 55.0 1155.0 -125.0
9 250 1300 26.1 325.0 1155.0 145.0

10 265 1175 14.1 200.0 1258.5 -83.5

X̄ Ȳ
Average 223.9 975.0 0.0 0.0 975.0 0.0
Equation Eq 1 Eq 2 Eq 8 Eq 9
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line relationship. An r value closer to either +1 or –1 indicates
that a straight line provides an ever stronger explanation of the
relationship. Fig. 4 shows examples of scatter plots that appear
for selected values of r.

5.3.2.2 The coefficient of determination is the squared value
of the correlation coefficient with symbol r2. It measures the
proportion of variation in the Y data explained by the predictor
variable X.

5.3.2.3 For the example the sample correlation coefficient
is:

r 5
36345

=~330550!~5268.9!
5 0.8709

The sample coefficient of determination for the example is r2

= 0.87092 = 0.7585. This means that approximately 76 % of the
variance in Y is explained by the straight line model. These
measures are often used as acceptance criteria for linearity; but
this usage should be discouraged, because these statistics are
not absolute measures of linearity and should be used for
comparative purposes only.

FIG. 2 Dot Plot of the Predictor Value X

FIG. 3 Scatter Plot of Data with Fitted Linear Model

FIG. 4 Typical Scatter Plots for Selected Values of the Correlation
Coefficient, r
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5.3.3 Residual Plots:
5.3.3.1 Plots of residuals ei are used for evaluating outliers

in the data and various model assumptions over the range of X,
including normality, constant error variance, linearity of the
regression function, and independence of the error terms.
These check for outliers in the data, constancy of Y distribution
variance, curvature of the regression function, lack of indepen-
dence of errors, and normality of the Y distribution.

5.3.3.2 The residuals dot plot is a useful diagnostic for
finding outliers, which may be harder to detect from the data
set itself. Large outliers can distort the estimate of the
regression line because the least squares procedure will tend to
move the line towards the outlier, thus masking it. Formal
outlier testing procedures can be found in Practice E178. A
residuals dot plot for the example is shown in Fig. 5. There are
no apparent outliers at each end of the plot. Additional graphics
for this purpose are histograms, “stem and leaf” plots, and “box
and whiskers” plots. (See Practice E2586.)

5.3.3.3 Plot of residuals against X (or equivalently against
Ŷ i) will detect certain departures from the assumptions. Re-
siduals may also be plotted against time of testing (if available)
or against another variable. Fig. 6 shows some of these
patterns, and Appendix X1 discusses remedies for these
departures. (The horizontal line on the plots indicates a value
of zero for the average of the residuals.)

(1) Plot A – the best pattern – indicates no model deficien-
cies.

(2) Plot B – increasing variance with X, consider weighted
regression or data transformations (see X1.4.4).

(3) Plot C – curvature in the relationship, consider adding
a quadratic term or using a nonlinear model (see X1.4.1).

(4) Plot D – possible effect of time order of testing or the
effect of another variable T.

The residuals plot for the example in Fig. 7 indicates no
obvious curvature, and a slight tendency for an increase in
vertical scatter with increasing X, but more data points would
be necessary to confirm this.

5.3.3.4 Plotting the residuals against a vertical scale of the
cumulative percentage of the normal distribution checks the
assumption of normality in the model. The fitted cumulative
normal distribution from the data is shown as a straight line on
the plot if the residuals fit a normal distribution. Computer
packages provide these plots and can also perform a more
rigorous statistical test for normality.

For the example, the residual plot against X in Fig. 8
indicates an approximate straight line pattern for the example,
supporting a normal distribution for the residuals.

5.4 Use of the Model for Interval Estimates of Regression
Parameters and Predicted Values:

5.4.1 The estimates b0 and b1 of their respective model
parameters β0 and β1 are point estimates. These estimates have
minimum variance among unbiased estimates without specify-
ing the distribution of Y. To give a sense of the precision for

these estimates, interval estimates, or confidence intervals, can
be provided. For these interval estimates, the form of the
statistical distribution is required, and the normal distribution is
usually specified, as in 5.1.3. The widths of the interval
estimates, given here as two-sided confidence intervals, are
dependent on (1) the standard errors of the estimates, and (2)
the level of confidence. The standard errors depend on the
number n and the values of the Xi. The confidence level is
chosen. Confidence level is defined as 100(1 – α)%, where α is
the probability that the confidence interval does not contain the
parameter value. For example, α = 0.05 (or a risk of 5 %
non-coverage) corresponds to a confidence level of 95 %,
which shall be used in the following examples in this section.

5.4.2 A general form for the confidence interval for a point
estimate E is:

E 6 tsE (13)

where sE is the standard error of the estimate and t is a
tabulated multiplier that is dependent upon the degrees of
freedom of the standard error and the confidence level. Practice
E2586 provides description of confidence intervals, standard
error, and degrees of freedom. In the example, the standard
deviation estimate is s = 99.9 inch-pounds with n – 2 = 10 – 2
= 8 degrees of freedom. The value of t is the upper (1 – α/2)th

quantile of the Student’s t distribution with n – 2 degrees of
freedom, for a confidence level of 100(1 – α)%. The value of
t for a 95 % two-sided confidence interval with 8 degrees of
freedom is 2.306.

The confidence interval can also be stated as the interval (L,
U) between lower (L) and upper (U) confidence limits for the
parameter being estimated.

5.4.3 The standard error for the slope estimate is:

sb1 5 s ⁄ =SXX (14)

From the example:

sb1 5 99.9 ⁄ =5268.9 5 1.376

The confidence interval for the slope β1 is calculated as:

b1 6 tsb1 (15)

From the example, the 95 % confidence interval is:

6.898 6 ~2.306!~1.376! 5 6.898 6 3.173

or ~3.725, 10.071!

If the confidence interval includes zero, this supports the
assertion that there is no relationship between X and Y at the
given level of confidence. In this example, the confidence
interval does not include zero, thus supporting the existence of
a statistical relationship between Y and X.

5.4.4 The standard error for the intercept estimate is:

sb0 5 sŒ1
n

1
X̄2

SXX

(16)

From the example:

sb0 5 99.9Œ 1
10

1
223.92

5268.9
5 309.76

The confidence interval for the intercept β0 is calculated as:FIG. 5 Dot Plot of Residuals
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