

SLOVENSKI STANDARD SIST ISO 4156:2000

01-januar-2000

FUj b]'i hcf]'n'Yj c`j Ybhb]a]'Vc_]'bU'j U'¶\ '!'A Yhfg_]'a cXi `žVc bc'df]`Y[Ub'Y'! Gd`cýbcža YfY']b'_cbhfc`U

Straight cylindrical involute splines -- Metric module, side fit -- Generalities, dimensions and inspection

iTeh STANDARD PREVIEW

Cannelures cylindriques droites à flancs en développante - Module métrique, à centrage sur flancs -- Généralités, dimensions et vérification

SIST ISO 4156:2000

Ta slovenski standard je istoveten z: Standard

<u>ICS:</u>

21.120.30 Mozniki, utori za moznike, Keys and keyways, splines razcepke

SIST ISO 4156:2000

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 4156:2000 https://standards.iteh.ai/catalog/standards/sist/ad56c236-1654-461c-80bae86ebfaf189b/sist-iso-4156-2000 International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEX AND A POPAHISALIN TO CTAH APTUSALUMORGANISATION INTERNATIONALE DE NORMALISATION

Straight cylindrical involute splines — Metric module, side fit — Generalities, dimensions and inspection

Cannelures cylindriques droites à flancs en développante — Module métrique, à centrage sur flancs — Généralités, dimensions et vérification

First edition - 1981-05-01

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 4156:2000 https://standards.iteh.ai/catalog/standards/sist/ad56c236-1654-461c-80bae86ebfaf189b/sist-iso-4156-2000

Descriptors : splines, dimensions, dimensional tolerances, limits, definitions, symbols, formulae (mathemathics), design.

Ref. No. ISO 4156-1981 (E)

SIST ISO 4156:2000

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 4156 was developed by Technical Committee ISO TC 32, IEW Splines and serrations, and was circulated to the member bodies in October 1978. Standards.iteh.al

It has been approved by the member bodies of the following countries :

the second se		ng seanaise i
	SI	<u>ST ISO 4156:2000</u>
Australia	https://standards.iteh.ai/catalo	g/standards/sist/ad56c236-1654-461c-80ba-
Austria	Italy e86ebfaf	189 6 (sike) so-4156-2000
Belgium	Japan	United Kingdom
Chile	Korea, Rep. of	USA
Finland	South Africa, Rep. of	Yugoslavia
France	Spain	

The member bodies of the following countries expressed disapproval of the document on technical grounds :

> Czechoslovakia Germany, F.R.

C International Organization for Standardization, 1981 •

Printed in Switzerland

SIST ISO 4156:2000

Contents

See	ction one : Generalities	
1	Scope and field of application	1
2	Terms and definitions relating to splines	1
3	Symbols	3
4	Pressure angle (standard)	8
5	Type of fit	8
iTeh ST	Space width and tooth thickness, total tolerance $(T + \lambda)$	8
(st	Basic rack profiles for spline	9
8	Machining tolerances and variations	12
9 https://standarda.itab.ai	Effect of spline variations	27
108 108	i/catalog/standards/sist/ad56c236-1654-461c-80ba- Effective and actual dimensions for splines	27
11	Use of effective and actual dimensions for space width and tooth thickness	28
12	Drawing data	31
Se	ction two : Dimensions	
13	Introduction	37
14	Dimensions and tolerances	37
Tal	bles	
3 0°	pressure angle	
-	– flat root	8-65
-	– fillet root	6-93
37,	5° pressure angle	-121
45°	° pressure angle	2-139

Section three : Inspection¹⁾

Page

¹⁾ In preparation : will be the subject of an addendum.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 4156:2000</u> https://standards.iteh.ai/catalog/standards/sist/ad56c236-1654-461c-80bae86ebfaf189b/sist-iso-4156-2000

Straight cylindrical involute splines – Metric module, side fit – Generalities, dimensions and inspection

Section one : Generalities

1 Scope and field of application

This International Standard provides data and guidance for the design, manufacture and inspection of straight (non-helical) cylindrical involute splines with side fit. It establishes a specification based on the module within the range 0,25 to 10 inclusive, relating to nominal pressure angles of 30°, 37.5° and 45°. (For electronic data processing purposes, the form of expression ''37,5°'' has been adopted instead of 37° 30'.)

Limiting dimensions, tolerances, manufacturing errors and the initial constrained in the initial constrained in the product diameter, the product diameter, initial constrained in th

2 Terms and definitions relating to splines

2.1 spline joint : Connecting, co-axial elements that transmit torque through the simultaneous engagement of equally spaced teeth situated around the periphery of a cylindrical external member with similar spaced mating spaces situated around the inner surface of the related cylindrical internal member.

2.2 involute spline : One member of spline joint having teeth or spaces that have involute flank profiles.

2.3 internal spline : A spline formed on the inner surface of a cylinder.

2.4 external spline : A spline formed on the outer surface of a cylinder.

2.5 fillet : The concave surface of the tooth or space connecting the involute flank and the root circle. This curved surface as generated varies and cannot be properly specified by a radius of any given value.

2.6 fillet root spline : A spline having a tooth or space profile in which the opposing involute flanks are connected to the root circle (D_{ei} or D_{ie} diameter) by a single fillet.

2.7 flat root spline : A spline having a tooth or space profile in which each of the opposing involute flanks are connected to the root circle $(D_{ei}, \text{ or } D_{ie} \text{ diameter})$ by a fillet.

12.8 module, m: The ratio of the circular pitch, expressed in millimetres, to the number π (or the ratio of the pitch diameter, correspondence) in millimetres, to the number of teeth).

2.9 (pitch circle : The reference circle from which all normal spline dimensions are derived, and the circle on which the specified pressure angle has its nominal value.

2.10 pitch diameter, D: The diameter of the pitch circle, in millimetres, equal to the number of teeth multiplied by the module.

2.11 pitch point : The intersection of the spline tooth profile with the pitch circle.

2.12 circular pitch, p: A length of arc of the pitch circle between two consecutive pitch points of left- (or right-) hand flanks, which has a normal value of the number π multiplied by the module.

2.13 pressure angle, α : The acute angle between a radial line passing through any point on a tooth flank and the tangent plane to the flank at that point.

2.14 standard pressure angle, α_D : The pressure angle at the specified pitch point.

2.15 base circle : The circle from which involute spline tooth profiles are generated.

2.16 base diameter, $D_{\rm b}$: The diameter of the base circle.

2.17 base pitch, p_b : The arc length of the base circle between two consecutive corresponding flanks.

2.18 major circle : The circle formed by the outermost surface of the spline. It is the outside circle (tooth tip circle) of the external spline or the root circle of the internal spline.

2.19 major diameter, D_{ee} , D_{ei} : The diameter of the major circle.

2.20 minor circle : The circle formed by the innermost surface of the spline. It is the root circle of the external spline or the inside circle (tooth tip circle) of the internal spline.

2.21 minor diameter, D_{ie} , D_{ii} : The diameter of the minor circle.

2.22 form circle : The circle which establishes the deepest points of involute form control of the tooth profile. This circle along with the tooth tip circle (or start of chamfer circle) determines the limits of tooth profile requiring control. It is located near and below the major circle on the internal spline and near and above the minor circle on the external spline.

2.23 form diameter, D_{Fe} , D_{Fi} : The diameter of the form A circle.

2.30 effective clearance, c_v (looseness or interference) : The effective space width of the internal spline minus the effective tooth thickness of the mating external spline.

2.31 theoretical clearance, c (looseness or interference) : The actual space width of an internal spline minus the actual tooth thickness of the mating external spline. It does not define the fit between mating members, because of the effect of variations.

2.32 form clearance, $c_{\rm F}$: The radial depth of involute profile beyond the depth of engagement with the mating part. It allows eccentricity of the minor circle (internal), of the major circle (external) and of their respective pitch circles.

2.33 total index variation : Amount of absolute values of the two greatest actual (or practically measured) positive and negative variations from the theoretical spacing.

2.34 total profile variation : Amount of absolute values of the two greatest positive and negative variations, from the theoretical tooth profiles, measured normal to flanks.

2.35 total lead variation : Amount of absolute values of the two greatest opposite direction variations, from the theoretical direction (parallel to the datum axis), also including parallelism and alignment variations (see figure 1).

2.24 depth of engagement : The radial distance from the NOTE – Straight (non-helical) splines have an infinite lead. minor circle of the internal spline to the major circle of the <u>sex-T ISO 4156:2000</u> ternal spline, minus corner clearance and/or chamfer depthog/standards/sist/ad56c236-1654-461c-80ba-

e86ebfaf189b/sist-iso-4156-2000

2.25 basic (circular) space width or tooth thickness at the pitch diameter, E or S: For 30°, 37,5° and 45° pressure angle splines, half the circular pitch.

2.26 actual space width : The practically measured circular space width, on the pitch circle, of any single space width within the limit values $E_{\text{max.}}$ and $E_{\text{min.}}$.

2.27 effective space width, E_v : For an internal spline, equal to the circular tooth thickness on the pitch circle of an imaginary perfect external spline which would fit the internal spline without looseness or interference, considering engagement of the entire axial length of the splined assembly. The minimum effective space width ($E_{v \text{ min.}}$, always equal to E) of the internal spline is always basic, as shown in table 1. Fit variations may be obtained by adjusting the tooth thickness of the external spline.

2.28 actual tooth thickness : The practically measured circular tooth thickness, on the pitch circle, of any single tooth within the limit values $S_{\text{max.}}$ and $S_{\text{min.}}$.

2.29 effective tooth thickness, S_v : For an external spline, equal to the circular space width on the pitch circle of an imaginary perfect internal spline which would fit the external spline without looseness or interference, considering engagement of the entire axial length of the splined assembly. Fit variations are obtained by adjusting this value S_v .

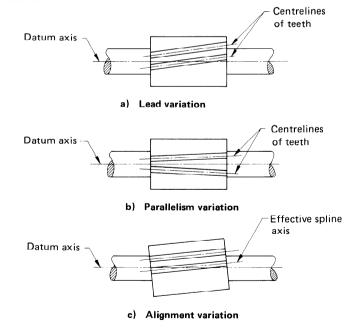


Figure 1 - Lead variations

2.36 parallelism variation : The variation of parallelism of a single spline tooth to any other single spline tooth (see figure 1).

2.37 alignment variation : The variation of the effective spline axis with respect to the reference axis (see figure 1).

2.38 out-of-roundness : The variation of the spline from a true circular configuration.

2.39 effective variation : The accumulated effect of the spline variations on the fit with the mating part.

2.40 variation allowance, λ : The permissible effective variation.

2.41 machining tolerance, *T* : The permissible variation in actual space width or actual tooth thickness.

2.42 total tolerance, $(T + \lambda)$: The machining tolerance plus the variation allowance. The total tolerance on an internal spline is the difference between the minimum effective space width and the maximum actual space width; on an external spline, it is the difference between the maximum effective tooth thickness and the minimum actual tooth thickness.

 $D_{\rm b}$ [DB] = base diameter

 d_{ci} = pin contact diameter, internal spline

 d_{ce} = pin contact diameter, external spline

 D_{Fe} [DFE] = form diameter, external spline

 $D_{\rm Fi}$ [DFI] = form diameter, internal spline

 D_{ii} [DII] = minor diameter, internal spline

 D_{ee} [DEE] = major diameter, external spline

 D_{ie} [DIE] = minor diameter, external spline

 D_{ei} [DEI] = major diameter, internal spline

 $D_{\text{Re}}[\text{DRE}] =$ diameter of measuring pin for external spline

 D_{Ri} [DRI] = diameter of measuring pin for internal spline

 λ = variation allowance

inv α = involute α (= tan α - α)

 $K_{\rm e}$ [KE] = approximation factor for external spline

 K_{i} [KI] = approximation factor for internal spline

g = spline length

 $g_{\rm w}$ = active spline length

 g_{ν} = length of engagement

T = machining tolerance

M_{Re} [MRE] = measurement over two pins, external spline $M_{\rm Bi}$ [MRI] = measurement between two pins, internal spline **2.43** length of engagement, g_{γ} : The axial length of con-W = measurement over k teeth, external spline tact between mating splines.

Z = number of teeth

2.44 active spline length, g_{w} : The maximum axial spline 2000 m ≡ module trad56236-1654-461c-80balength in contact (when working) with the mating spline. On sliding splines, the active length exceeds the length of engage 2^{1} sliding splines. Of engage 2^{1} base pitch p = circular pitchment.

2.45 basic dimension : A numerical value to describe the theoretically exact size, shape or location of a feature. It is the basis from which permissible variations are established by tolerances.

2.46 auxiliary dimension : A dimension, without tolerance, given for information purposes only, for the determination of the useful production and control dimensions.

3 Symbols

3.1 General symbols

The general symbols used to designate the various spline terms and dimensions are given below (see figures 10, 11, 12, 13, 14 and 15).

NOTE - In electronic data processing (EDP), it is not always possible to present symbols in their theoretically correct form because of limitations of connected printing equipment. For this reason, some alternative symbols for EDP usage are given in brackets below (for example, the symbol D_{b} for base diameter may be printed as DB).

- c_v = effective clearance (looseness or interference)
- $c_{\rm F} =$ form clearance
- D = pitch diameter

 $\rho_{\rm Fe}$ = fillet radius of the basic rack, external spline

 $\rho_{\rm Fi}$ = fillet radius of the basic rack, internal spline

E = basic space width, circular

 E_{max} = actual maximum space width, circular

 E_{min} = actual minimum space width, circular

 E_{v} [EV] = effective space width, circular

S = basic tooth thickness, circular

S_{max} = actual maximum tooth thickness, circular

 S_{\min} = actual minimum tooth thickness, circular

 S_{v} [SV] = effective tooth thickness, circular

 α = pressure angle

 $\alpha_{\rm D}$ = standard pressure angle

 α_{ci} = pressure angle at pin contact diameter, internal spline α_{ce} = pressure angle at pin contact diameter, external spline

 α_i = pressure angle at pin centre, internal spline

 $\alpha_{\rm e}$ = pressure angle at pin centre, external spline

 $\alpha_{\rm Ee}$ = pressure angle at form diameter, external spline

 $\alpha_{\rm Fi}$ = pressure angle at form diameter, internal spline

 $k - j_s - h - f - e$ and d = fundamental deviation on the external spline = $c_{v \min}$

H = fundamental deviation on the internal spline

SIST ISO 4156:2000

ISO 4156-1981 (E)

Tables 1 and 2 give the basic dimensions and fundamental formulae, a graphical presentation of which is given by figure 2.

Table 1 - Theoretical dimensions for splines

Dimensions in millimetres

Tooth	Module Circular pitch		Basic space width or tooth thickness at pitch diameter E or S			Base pitch _{ρ_b}		
α _D 30° *	m	p	α _D 30°	α _D 37,5°	α _D 45°	α _D 30°	α _D 37,5°	α _D 45°
	10	31,416	15,708	15,708	_	27,207 0	24,923 9	_
	8	25,133	12,566	12 <i>,</i> 566	_	21,765 6	19,939 2	_
	6	18,850	9,425	9,425	_	16,324 2	14,954 4	_
\sim	5	15,708	7,854	7,854	1	13,603 5	12,462 0	
$ \ \ \qquad \qquad$	4 4	h STA ^{12,566} (Sta	6,283	RD P 1s.iteh	REVII .ai)	10,882 8	9,969 6	_
$\sim\sim\sim$	https://star		SIST ISO tatalog/standa ebfaf189b/sis	4 <u>156:2000</u> rds/sist/ad56 t-iso-4156-2		61 61 , 162 1	7,477 2	-
~~~~	2,5	7,854	3,927	3,927	3,927	6,801 7	6,231 0	5,553 6
$\sim\sim\sim$	2	6,283	3,142	3,142	3,142	5,441 4	4,984 8	4,442 9
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,75	5,498	2,749	2,749	2,749	4,761 2	4,361 7	3,887 5
$\sim\sim\sim$	1,5	4,712	2,356	2,356	2,356	4,081 0	3,738 6	3,332 2
, m	1,25	3,927	1,963	1,963	1,963	3,400 9	3,115 5	2,776 8
~~~~	1	3,142	1,571	1,571	1,571	2,720 7	2,492 4	2,221 4
كسيك	0,75	2,356	1,178	1,178	1,178	2,040 5	1,869 3	1,666 1
Lund	0,5	1,571	0,785	0,785	0,785	1,360 4	1,246 2	1,110 7
,h	0,25	0,785	-	_	0,393	_	_	0,555 4

* For illustration purposes : relative tooth sizes for various spline modules for pressure angle  $\alpha_D = 30^\circ$ .

Term	Symbol	Formula
Pitch diameter	D	m Z
Base diameter	Db	$m Z \cos \alpha_D$
Circular pitch	ρ	π <i>m</i>
Base pitch	$p_{b}$	$\pi m \cos \alpha_{D}$
Effective upper deviation, external	esv	resulting from deviation allowance (fundamental) $k = j_s - h - f - e$ and d
Minimum diameter, internal		
30° , flat root	D _{ei min}	m(Z + 1.5)
30° , fillet root	D _{ei min}	m(Z + 1,8)
37,5 $^{\circ}$ , fillet root	D _{ei min}	m(Z + 1,4)
45°, fillet root	D _{ei min}	m(Z + 1,2)
Maximum major diameter, internal	D _{ei max}	$D_{ei \min} + (T + \lambda)/\tan \alpha_D$ (see note 1)
Minimum form diameter, internal		
$30^\circ$ , flat root and fillet root	D _{Fimin}	$m(Z+1)+2c_{F}$
37,5°, fillet root	D _{Fimin}	$m(Z + 0,9) + 2 c_{F}$
$45^{\circ}$ , fillet root	D _{Fimin}	$m(Z + 0.8) + 2 c_{F}$
Minimum diameter, internal	D _{ii min}	$D_{Fe max} + 2 c_F$ (see note 2)
Maximum minor diameter, internal 🛛 🥿 🗌	ANDARD PR	EVIEW
<i>m</i> ≤ 0,75	D _{ii max}	D _{ii min} + tol. H 10
0,75 < m < 2 (St	andards iteh.	$D_{ii \min} + tol. H 11$
<i>m</i> ≥ 2	D _{ii max}	D _{ii min} + tol. H 12
Basic space width and	<u> \$IST ISQ 4156:2000</u>	
Minimum effective space Width	/catalog/standards/sist/ad56c2	236-16955 #1691 c-80ba-
Maximum actual space width	6ebfaf189b/sist-iso-4156-20	00
class 4	Emax	$E_{v \min} + (T + \lambda)$ (see note 3)
class 5	E _{max}	$E_{\rm v min} + (T + \lambda)$ (see note 3)
class 6	E _{max}	$E_{v \min} + (T + \lambda)$ (see note 3)
class 7	E _{max}	$E_{\rm v min} + (T + \lambda)$ (see note 3)
Minimum actual space width	Emin	$E_{\rm v min} + \lambda$ (see 8.2)
Maximum effective space width		$E_{\text{max}} - \lambda$ (see 8.2)
Maximum major diameter, external	- v max	
30° , flat root and fillet root	D _{ee max}	$m(Z + 1) + es_v/tan \alpha_D$ (see note 4)
$37,5^{\circ}$ , fillet root	Dee max D _{ee max}	$m(Z + 0.9) + e_{\rm sy}/\tan \alpha_{\rm D} (\text{see note } 4)$ $m(Z + 0.9) + e_{\rm sy}/\tan \alpha_{\rm D} (\text{see note } 4)$
45°, fillet root		$m(Z + 0,8) + e_{\rm sy}/\tan \alpha_{\rm D} (\text{see note 4})$ $m(Z + 0,8) + e_{\rm sy}/\tan \alpha_{\rm D} (\text{see note 4})$
Minimum major diameter, external	D _{ee max}	$m_{Z} + 0.01 + e_{V}/\tan \alpha B$ (see note 4)
$m \leq 0.75$	0	D tol b 10
0,75 < m < 2	D _{ee min}	$D_{ee max}$ – tol. h 10
0,15 < m < 2 $m \ge 2$	D _{ee min}	$D_{ee max}$ – tol. h 11
	D _{ee min}	D _{ee max} – tol. h 12
Maximum form diameter, external	D _{Fe max}	$2\sqrt{(0,5 D_{\rm b})^2 + \left(0,5 D \sin \alpha_{\rm D} - \frac{h_{\rm s} - \frac{0,5 e s_{\rm v}}{\tan \alpha_{\rm D}}}{\sin \alpha_{\rm D}}\right)^2}$
	- Fe max	$\int \frac{1}{\sqrt{(\alpha_{D} - \alpha_{D})}} \frac{1}{\sqrt{(\alpha_{D} - \alpha$
Maximum minor diameter, external		(See note 6)
30°, flat root	D _{ie max}	$m(Z-1,5) + es_v/\tan \alpha_D$
30°, fillet root	D _{ie max}	$m(Z-1,8) + es_v/tan lpha_D$
37,5°, fillet root	D _{ie max}	$m(Z-1,4) + es_v/\tan \alpha_D$
45°, fillet root	D _{ie max}	$m(Z-1,2) + es_v/\tan \alpha_D$

#### Table 2 - Formulae for dimensions and tolerances for all fit classes

Term	Symbol	Formula
Minimum minor diameter, external	D _{ie min}	${\cal D}_{ie\max} - ({\cal T}+\lambda)/ an lpha_{ m D}$ (see note 1)
Basic tooth thickness	S	0,5 π m
Maximum effective tooth thickness	S _{v max}	$S + es_{v}$
Minimum actual tooth thickness		
class 4	S _{min}	$S_{v max} - (T + \lambda)$ (see note 3)
class 5	s _{min}	$S_{v max} - (T + \lambda)$ (see note 3)
class 6	S _{min}	$S_{v max} - (T + \lambda)$ (see note 3)
class 7	S _{min}	$S_{v max} - (T + \lambda)$ (see note 3)
Maximum actual tooth thickness	S _{max}	${m \mathcal{S}_{f v}}_{f max} = \lambda$
Minimum effective tooth thickness	S _{v min}	$S_{min} + \lambda$
Total tolerance, space width or tooth thickness	$(T + \lambda)$	(see clause 6)
Form clearance	с _Е	0,1 <i>m</i>
Pin diameter, internal spline	D _{Ri}	see note 5
Pin diameter, external spline	D _{Re}	see note 5
Measurement between pins	M _{Ri}	see note 5
Measurement over pins	M _{Re}	see note 5
Change factor, internal	Ki	see section three, "Inspection"
Change factor, external	<b>STÁ®NDAR</b>	see section three, "Inspection"

Table 2 –	Formulae for	dimensions and	tolerances	for all fit	classes	(concluded)
-----------	--------------	----------------	------------	-------------	---------	-------------

NOTES

# (standards.iteh.ai)

2 For all classes of fit, always take the  $D_{Fe max}$  value corresponding to the H/h fit.

SIST ISO 4156:2000 3 See clause 6 and section two - tables of dimensions.

Take a null upper deviation value for J_s and k fundamental deviations.
See section two : "Dimensions", and section three : "Inspection", concerning choice of pins.

6 For  $h_s$  see figures 3, 4, 5 and 6.

1  $(T + \lambda)$  for class 7 - see clause 6.

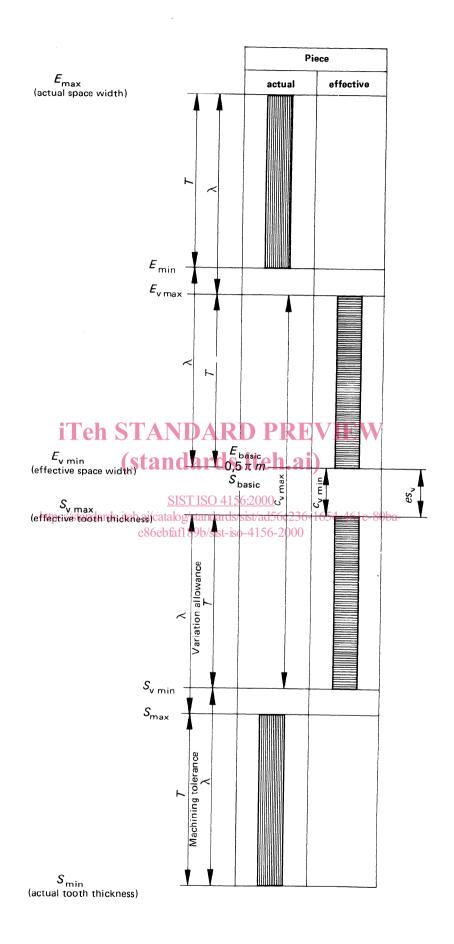



Figure 2 - Graphical representation of tables 1 and 2

#### 3.2 Subscripts

The following subscripts (see also the note in 3.1) are used as part of the above general symbols to designate relative conditions or locations :

- [I] = minor or internal (in this last case, in the last position)
- $_{e}[E] =$  major or external (in this last case, in the last position)
- $_{\rm b}[{\rm B}] = {\rm at \ base}$
- $_{c}$  = at contact point
- $_{\rm F}[{\rm F}] = {\rm pertaining to form diameter}$
- V[V] = effective
- w = active
- $_{R}[R] =$  pertaining to gauges
- $_{v}$  = of engagement

D = standard

#### Pressure angle (standard) 4

Standard pressure angles included in this International Standard for involute splines are 30°, 37,5° and 45°

classes as follows :

Spline fit class	Effective interference
H/k	$c_{v \max} = (T + \lambda)$
H/j _s	$c_{v \max}$ = deviation allowance $j_s = \left(\frac{T+\lambda}{2}\right)$
	Effective looseness
H/h	$c_{v min}$ = deviation allowance h = zero
H/f	$c_{v \min}$ = deviation allowance f
H/e	$c_{v \min}$ = deviation allowance e
H/d	$c_{v \min}$ = deviation allowance d

The deviation allowances (fundamental)  $k - j_s - h - f - e$ and d are the standard deviations selected from ISO/R 286 /SO System of limits and fits – Part 1 : General, tolerances and deviations, which are applied to the external spline. A prescribed maximum effective interference or minimum effective looseness is obtained, allowing the fitting by adjusting from the zero line the maximum effective and minimum actual limit values of tooth thickness by the amount of the deviation allowance (see 8.7.2). The spline dimensions in the spline tables of this International Standard are given for spline fit class H/h,  $c_{v \min} = zero$ .

from a combination of tolerance units (i) in ISO/R 286. The

tolerance classes are indicated below, with corresponding combination of tolerance units (i). For the calculation of T and  $\lambda$ , see clause 8. The values of  $\lambda$  are given in tables 3 to 6 of

#### Space width and tooth thickness, 1 I en total tolerance $(T + \lambda)$ (standard

#### 5 Type of fit

#### **Tolerance classes** SIST ISO 4156:2000

clause 8.

This International Standard deals with only one type of fit the standar This International 6 Standard 8 includes four classes of total side fit, for 30°, 37,5° and 45° pressure angle splines. Formulae 30 + 30 + 30 = 100 hor space width and tooth thickness selected for the dimensions and tolerances for these splines are shown in table 2.

#### 5.1 Side fit

In this fit, the mating members contact on the sides of the teeth only. Major and minor diameters are clearance dimensions. The tooth sides act as drivers and centralize mating splines.

#### 5.2 Spline fit classes

This International Standard provides the side fit in six spline fit

Tolerance based on pitch diameter

 $i = 0.45 \sqrt[3]{D} + 0.001 D$  for  $D \le 500 \text{ mm}$ 

i = 0,004 D + 2,1for D > 500 mm

Tolerance based on space width or tooth thickness

$$i = 0.45 \sqrt[3]{E (or S)} + 0.001 E (or S)$$

where

- is the pitch diameter in millimetres; D
- E is the basic space width in millimetres;
- S is the basic tooth thickness in millimetres.

the resultant  $(T + \lambda)$  in micrometres. For  $(T + \lambda)$  in millimetres, multiply the result by 0,001.

For the calculation of tolerance units (i), only the above indicated formulae (notes *, **) are to be taken into consideration.

#### Spline tolerance **Tolerance** unit class (i) = (10 i* + 40 i**) 4 $= (16 i^* + 64 i^{**})$ 5 $= (25 i^* + 100 i^{**})$ 6 $= (40 i^* + 160 i^{**})$ 7

It should to be noted that total values ( $T + \lambda$ ) may **always** be subtracted from the limit values of space width and tooth thickness given in section 2 and are usable even if the chosen fit class is other than H/h.

NOTE — Below are listed the combinations of tolerance qualities IT corresponding to the combinations of tolerance units (i) indicated above. Those combinations of tolerance qualities IT are given only to indicate the conception principle of the tolerance system regarding its eventual extension, and **only to rediscover** the corresponding combinations of tolerance units (i).

Spline tolerance class	Tolerance quality (IT)
4	= (IT 6* + IT 9**)
5	= (IT 7* + IT 10**)
6	= (IT 8* + IT 11**)
7	= (IT 9* + IT 12**)

#### 7 Basic rack profiles for spline

7.1 The basic rack is a section of the tooth surface of an in-

volute spline of infinitely large diameter on a plane at right angles to the tooth surfaces, the profile of which is used as the basis for defining the standard tooth dimensions of a system of involute splines.

**7.2** The reference line is a straight line crossing the profile of the basic rack, with reference to which the tooth dimensions are specified.

**7.3** The profile of the basic rack for the standard pressure angle splines is represented in the following figures :

figure 3 :  $30^{\circ}$  flat root spline, for modules 0,5 to 10;

figure 4 : 30° fillet root spline, for modules 0,5 to 10;

figure 5: 37,5° fillet root spline, for modules 0,5 to 10;

figure 6 :  $45^{\circ}$  fillet root spline, for modules 0,25 to 2,5.

### iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 4156:2000 https://standards.iteh.ai/catalog/standards/sist/ad56c236-1654-461c-80bae86ebfaf189b/sist-iso-4156-2000

^{*} Tolerance based on pitch diameter.

^{**} Tolerance based on space width and tooth thickness.