NORME INTERNATIONALE INTERNATIONAL **STANDARD**

CEI **IEC** 60404-14

> Première édition First edition 2002-06

Matériaux magnétiques -

Partie 14:

Méthode de mesure du moment magnétique coulombien d'une éprouvette de matériau ferromagnétique par la méthode du retrait ou la méthode par rotation (standards.iteh.ai)

Magnetic materials 13-2002 https://standards.iteli.avcatalog/standards/sist/afe70a77-d316-4bd7-869de37e0ab2fe02/iec-60404-14-2002

Methods of measurement of the magnetic dipole moment of a ferromagnetic material specimen by the withdrawal or rotation method

Numérotation des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000. Ainsi, la CEI 34-1 devient la CEI 60034-1.

Editions consolidées

Les versions consolidées de certaines publications de la CEI incorporant les amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2.

Informations supplémentaires sur les publications de la CEI

Le contenu technique des publications de la CEI est constamment revu par la CEI afin qu'il reflète l'état actuel de la technique. Des renseignements relatifs à cette publication, y compris sa validité, sont disponibles dans le Catalogue des publications de la CEI (voir ci-dessous) en plus des nouvelles éditions, amendements et corrigenda. Des informations sur les sujets à l'étude et l'avancement des travaux entrepris par le comité d'études qui a élaboré cette publication, ainsi que la liste des publications parues, sont également disponibles par l'intermédiaire de

• Site web de la CEI (www.iec.ch)

• Catalogue des publications de la CEI

https://standards.iteh.ai/catalog/standards/sist/acceptage en ligne sur le site web de la CEI/icc-60404-recherches en utilisant de nombreux critères, comprenant des recherches textuelles, par comité d'études ou date de publication. Des informations en ligne sont également disponibles sur les nouvelles publications, les publications remplacées ou retirées, ainsi que sur les corrigenda.

IEC Just Published

Ce résumé des dernières publications parues (www.iec.ch/JP.htm) est aussi disponible par courrier électronique. Veuillez prendre contact avec le Service client (voir ci-dessous) pour plus d'informations.

Service clients

Si vous avez des questions au sujet de cette publication ou avez besoin de renseignements supplémentaires, prenez contact avec le Service clients:

Email: <u>custserv@iec.ch</u>
Tél: +41 22 919 02 11
Fax: +41 22 919 03 00

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

IEC Web Site (<u>www.iec.ch</u>)

IEC 60404-14:2002 Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication. Online information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

IEC Just Published

This summary of recently issued publications (www.iec.ch/JP.htm) is also available by email. Please contact the Customer Service Centre (see below) for further information.

Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

NORME INTERNATIONALE INTERNATIONAL **STANDARD**

CEI **IEC** 60404-14

> Première édition First edition 2002-06

Matériaux magnétiques -

Partie 14:

Méthode de mesure du moment magnétique coulombien d'une éprouvette de matériau rferromagnétique par la méthode du retrait ou la méthode par rotation (standards.iten.ai)

Magnetic materials 15202 https://standards.iteli.avcatalog/standards/sist/afe70a77-d316-4bd7-869d-37e0ab2fe02/iec-60404-14-2002

Part 14:

Methods of measurement of the magnetic dipole moment of a ferromagnetic material specimen by the withdrawal or rotation method

© IEC 2002 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale

CODE PRIX PRICE CODE

SOMMAIRE

AV.	ANT-I	PROPOS	4		
INT	ROD	UCTION	6		
1	Dom	aine d'application	8		
2		rences normatives			
3	Défii	nitions	10		
4	Princ	cipe général de la mesure	10		
5	Eprouvette				
6	Bobi	obine de détection12			
7	Intég	grateur de flux magnétique	12		
8	Mesure du moment magnétique coulombien d'un matériau magnétisé				
	8.1	Correction des lectures de l'intégrateur pour les effets de chargement sans étalonnage de l'intégrateur	14		
	8.2	Configuration du circuit de mesure lorsque l'intégrateur est étalonné en utilisant un inducteur mutuel	14		
	8.3	Etalonnage du dispositif de mesure du moment magnétique coulombien au moyen d'un échantillon d'aimant permanent étalonné	16		
	8.4	Méthode de retrait STANDARD PREVIEW Méthode par rotation	16		
_	8.5				
9		rmination de la valeur de saturation du moment magnétique coulombien			
10	Déte	rmination de la polarisation magnétique J	18		
11 12	https://standards.iteh.ai/catalog/standards/sist/afe70a77-d316-4bd7-869d- ³ Etalonnage de l'appareil de mesure de la valeur de saturation du moment				
	illay	netique coulombien	20		
13		rtitude de mesure			
14	Rap	oort d'essai	20		
		A (informative) Mesure de la polarisation magnétique de saturation spécifique éprouvette plus longue que la zone homogène des bobines de Helmholtz	22		
ma	gnétic	B (informative) Mesure sur éprouvettes ferromagnétiques avec un champ que à saturation élevée, par exemple éprouvette de métal dur e teneur élevée en cobalt	24		
		C (informative) Mesure sur éprouvette de faible masse, par exemple			
		ouvette de métal dur avec une teneur en cobalt inférieure à 50 mg	26		
Fig	ure 1	Circuit pour la mesure du moment magnétique coulombien	14		
Fig	ure 2	- Disposition avec aimant sans fer	18		
Fia	ure 3	- Disposition avec aimant à culasse en O	18		

CONTENTS

FΟ	REW	ORD	5			
INT	ROD	UCTION	7			
1	Soor	De	0			
1 2		native references				
		nitions				
3		eral principle of measurement				
4		·				
5		specimen				
6		ction coil				
7	_	netic flux integrator				
8		surement of the magnetic dipole moment of magnetized material	15			
	8.1	Correction of integrator readings for loading effects with no integrator calibration	15			
	8.2	Circuit configuration for measurement when the integrator is calibrated using				
	8.3	a mutual inductor	15			
	0.5	by means of a calibrated permanent magnet sample	17			
	8.4	Withdrawal method STANDARD PREVIEW	17			
	8.5	Rotation methodrmination of the magnetic dipole moment	17			
9						
10	Dete	rmination of the magnetic polarization J	19			
11	Dete	rmination of the specific saturation magnetic polarization ϕ_{s} 17.869d	19			
12 Calibration of the measuring device for the saturation value of the magne		pration of the measuring device for the saturation value of the magnetic dipole nent	21			
13		ertainty of measurement				
		report				
• •	1000					
		(informative) Measurement of the specific saturation magnetic polarization of simen longer than the homogenous area of the Helmholtz coil	23			
		(informative) Measurement of ferromagnetic specimens with high saturation is field, e.g. a hardmetal specimen with high cobalt content				
		(informative) Measurement of a test specimen with a small mass, rdmetal specimen of a cobalt content less than 50 mg	27			
	Figure 1 – Circuit for measurement of magnetic dipole moment					
Fig	Figure 2 – Ironless magnet arrangement					
Fig	ure 3	- O-yoke magnet arrangement	19			

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

MATÉRIAUX MAGNÉTIQUES -

Partie 14: Méthode de mesure du moment magnétique coulombien d'une éprouvette de matériau ferromagnétique par la méthode du retrait ou la méthode par rotation

AVANT-PROPOS

- 1) La CEI (Commission Électrotechnique Internationale) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales. Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés sont représentés dans chaque comité d'études.
- 3) Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiés comme normes, spécifications techniques, rapports techniques ou guides et agréés comme tels par les Comités nationaux.
- 4) Dans le but d'encourager l'unification internationale, les Comilés nationaux de la CEI s'engagent à appliquer de façon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cefté dernière.
- 5) La CEI n'a fixé aucune procédure concernant le marquage comme indication d'approbation et sa responsabilité n'est pas engagée quand un matériel est déclaré conformé à l'une de ses normes.
- 6) L'attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence

La Norme internationale CEI 60404-14 a été établie par le comité d'études 68 de la CEI: Matériaux magnétiques tels qu'alliages et aciers.

Le texte de cette norme est issu des documents suivants:

FDIS	Rapport de vote
68/254/FDIS	68/257/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 3.

Les annexes A, B et C sont données uniquement à titre d'information.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant 2009. A cette date, la publication sera

- reconduite;
- supprimée;
- · remplacée par une édition révisée, ou
- · amendée.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MAGNETIC MATERIALS -

Part 14: Methods of measurement of the magnetic dipole moment of a ferromagnetic material specimen by the withdrawal or rotation method

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60404-14 has been prepared by IEC technical committee 68: Magnetic alloys and steels.

The text of this standard is based on the following documents:

FDIS	Report on voting
68/254/FDIS	68/257/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

Annexes A, B and C are for information only.

The committee has decided that the contents of this publication will remain unchanged until 2009. At this date, the publication will be

- · reconfirmed;
- · withdrawn;
- · replaced by a revised edition, or
- · amended.

INTRODUCTION

Le moment magnétique coulombien j d'une éprouvette de matériau ferromagnétique est un paramètre utile pour comparer des propriétés, en particulier des matériaux d'aimant permanent. La mesure du moment magnétique coulombien de saturation par unité de masse (polarisation magnétique de saturation spécifique $\sigma_{\rm s}$) est un cas spécial largement répandu pour caractériser les métaux consolidés par des carbures. Alors que ces matériaux sont essentiellement de caractère non magnétique, le cobalt ou le nickel est utilisé comme liant et l'exigence est d'atteindre une composition optimale et un agencement géométrique de la phase liante avec une reproductibilité élevée. La détermination de la polarisation magnétique de saturation spécifique a été reconnue dans l'industrie des carbures métalliques comme une méthode de mesure simple, rapide et non destructive.

La mesure du moment magnétique est, dans de larges limites, indépendante de la forme et de la taille de l'éprouvette. Si le matériau, comme dans le cas des métaux consolidés par des carbures, contient seulement un composant ferromagnétique (cobalt ou nickel), il est possible de déterminer sa proportion en pourcentage avec une haute résolution.

Un autre paramètre utile qui peut être déduit de la mesure du moment magnétique coulombien d'une éprouvette d'essai et de son volume V est la polarisation magnétique J. La valeur de la polarisation magnétique de saturation est d'un intérêt particulier pour certains matériaux magnétiques. Des éprouvettes de référence sphériques, ellipsoïdales et cylindriques en nickel avec une polarisation magnétique de saturation mesurée sont utilisées pour l'étalonnage des magnétomètres à échantillon vibrant.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 60404-14:2002</u> https://standards.iteh.ai/catalog/standards/sist/afe70a77-d316-4bd7-869d-e37e0ab2fe02/iec-60404-14-2002

INTRODUCTION

The magnetic dipole moment j of a ferromagnetic material specimen is a useful parameter for comparing properties, particularly of permanent magnet materials. The measurement of the saturation magnetic dipole moment per unit mass (specific saturation magnetic polarization σ_s) is a special case widely used to characterize cemented carbide metals. Whilst these materials are essentially non-magnetic in character, cobalt or nickel is used as the binder and it is required to achieve an optimum composition and geometrical arrangement of the binder phase with high reproducibility. The determination of the specific saturation magnetic polarization has gained acceptance in the carbide metal industry as a simple, fast and non-destructive measurement method.

The measurement of magnetic moment is, within broad limits, independent of the shape and size of the test specimen. If the material, as in the case of cemented carbide metal, contains only one ferromagnetic component (cobalt or nickel), it is possible to determine its percentage proportion with high resolution.

Another useful parameter which can be derived from the measurement of the magnetic dipole moment of a test specimen and its volume V is the magnetic polarization J. The value of saturation magnetic polarization is of particular interest for certain magnetic materials. Spherical, ellipsoidal and cylindrical reference specimens of nickel of measured saturation magnetic polarization are used in the calibration of vibrating sample magnetometers.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 60404-14:2002</u> https://standards.iteh.ai/catalog/standards/sist/afe70a77-d316-4bd7-869d-e37e0ab2fe02/iec-60404-14-2002

MATÉRIAUX MAGNÉTIQUES -

Partie 14: Méthode de mesure du moment magnétique coulombien d'une éprouvette de matériau ferromagnétique par la méthode du retrait ou la méthode par rotation

1 Domaine d'application

La présente partie de la CEI 60404 est applicable à tous les matériaux ferromagnétiques. Elle est en particulier dédiée à la mesure du moment magnétique coulombien des matériaux d'aimant permanent (magnétiquement durs) et à la mesure de la polarisation magnétique de saturation spécifique des matériaux consolidés par des carbures ayant un liant ferromagnétique.

L'objet de la présente partie est de décrire les principes généraux de la détermination du moment magnétique coulombien d'une éprouvette de matériau ferromagnétique en utilisant une bobine de détection dans un circuit magnétique ouvert. Avec l'adjonction d'un moyen de magnétisation du matériau à saturation, le moment magnétique coulombien de saturation peut également être déterminé. En outre, la polarisation magnétique moyenne d'une éprouvette peut être déduite de la mesure de son moment magnétique coulombien et de son volume. L'étalonnage de systèmes à bobines pour le moment magnétique et la mesure du moment magnétique coulombien de matériaux faiblement magnétiques peuvent également être réalisés en utilisant cette méthode.

(standards.iteh.ai)

Les mesures sont normalement exécutées à la température ambiante mais des mesures à d'autres températures peuvent être réalisées en chauffant ou en refroidissant le volume qui est occupé par l'éprouvette dans la bobine de détection 70a77-d316-4bd7-869d-

e37e0ab2fe02/iec-60404-14-2002

La mesure de la rémanence, de la coercitivité, du produit maximal d'énergie et d'autres paramètres peut être faite dans un circuit magnétique fermé comme décrit dans la CEI 60404-4 et dans la CEI 60404-5. La mesure de la coercitivité $H_{\rm cJ}$ des matériaux doux et semi-durs peut également être exécutée dans un circuit ouvert comme décrit dans la CEI 60404-7.

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60050-121, Vocabulaire électrotechnique international (VEI) – Partie 121: Électromagnétisme

CEI 60050-151, Vocabulaire électrotechnique international (VEI) – Partie 151: Dispositifs électriques et magnétiques

CEI 60050(221), Vocabulaire électrotechnique international (VEI) – Chapitre 221: Matériaux et composants magnétiques

CEI 60404-4, Matériaux magnétiques – Partie 4: Méthodes de mesure en courant continu des propriétés magnétiques des matériaux magnétiquement doux

MAGNETIC MATERIALS -

Part 14: Methods of measurement of the magnetic dipole moment of a ferromagnetic material specimen by the withdrawal or rotation method

1 Scope

This part of IEC 60404 is applicable to all ferromagnetic materials. It is particularly aimed at the measurement of the magnetic dipole moment of permanent magnet (magnetically hard) materials and the measurement of the specific saturation magnetic polarization of cemented carbide materials having a ferromagnetic binder.

The object of this part is to describe the general principles of the determination of the magnetic dipole moment of a ferromagnetic material specimen using a detection coil in an open magnetic circuit. By including a means of magnetizing the material to saturation, the saturation magnetic dipole moment can also be determined. In addition, the average magnetic polarization of a test specimen can be derived from the measurement of its magnetic dipole moment and volume. The calibration of magnetic moment coil systems and the measurement of the magnetic dipole moment of feebly magnetic materials can also be determined using this method.

iTeh STANDARD PREVIEW

Measurements are normally performed at room temperature but measurements at other temperatures can be conducted by heating of cooling the volume occupied by the test specimen within the detection coil.

IEC 60404-14:2002

The measurement of remanence coercivity maximum renergy product and other parameters can be made in a closed magnetic circuit as described in IEC 60404-4 and IEC 60404-5. Measurement of the coercivity $H_{\rm cJ}$ of soft and semi-hard materials can also be performed in an open circuit as described in IEC 60404-7.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050(121), International Electrotechnical Vocabulary (IEV) – Part 121: Electromagnetism

IEC 60050(151), International Electrotechnical Vocabulary (IEV) – Part 151: Electrical and magnetic devices

IEC 60050(221), International Electrotechnical Vocabulary (IEV) – Chapter 221: Magnetic materials and components

IEC 60404-4, Magnetic materials — Part 4: Methods for the measurement of d.c. magnetic properties of magnetically soft materials

CEI 60404-5, Matériaux magnétiques – Partie 5: Aimants permanents (magnétiques durs) – Méthodes de mesure des propriétés magnétiques

CEI 60404-7, Matériaux magnétiques – Partie 7: Méthode de mesure du champ coercitif des matériaux magnétiques en circuit magnétique ouvert

ISO, Guide pour l'expression de l'incertitude de mesure

3 Définitions

Pour les besoins de la présente partie de la CEI 60404, les définitions des CEI 60050(121), CEI 60050(151) et CEI 60050(221) s'appliquent.

4 Principe général de la mesure

Quand une éprouvette magnétisée est retirée d'une bobine de détection étalonnée, reliée à un intégrateur de flux magnétique étalonné, le moment magnétique coulombien de l'éprouvette de matériau peut être déterminé à partir de:

$$j = \Delta \phi / k_{\mathsf{h}} \tag{1}$$

οù

- j est le moment magnétique coulombien, en webers mètres;
- k_h est la constante de champ magnétique sur intensité de courant de la bobine de détection $k_h = H/I$, en (ampères par mètre) par ampère;
- Δφ est la modification du flux due à la<u>rotation |συ (aυ</u> retrait de l'éprouvette de l'enroulement de détection, |epswebers|s.iteh.ai/catalog/standards/sist/afe70a77-d316-4bd7-869d-
- H est l'intensité du champ magnétique, en ampères par mètre;
- I est l'intensité du courant, en ampères.

Quand l'éprouvette est tournée de 180° au centre de la bobine de détection, l'équation (1) est changée en:

$$j = \Delta \phi / 2 k_{\mathsf{h}} \tag{2}$$

Si le volume de l'éprouvette est déterminé, la polarisation magnétique au point de fonctionnement *J* peut être calculée à partir:

$$J = j / V \tag{3}$$

οù

- J est la polarisation magnétique au point de fonctionnement, en teslas;
- j est le moment magnétique coulombien, en webers mètres;
- V est le volume de l'éprouvette, en mètres cubes.