International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEX CHAPODHAR OPPAHUSAUUR TO CTAHDAPTUSAUUMORGANISATION INTERNATIONALE DE NORMALISATION

Cereals and pulses — Measurement of unit pressure losses due to single-dimension air flow through a batch of grain

Céréales et légumineuses – Mesurage des pertes de charge unitaires dues à l'écoulement unidimensionnel de l'air à travers un lot iteh Standard PREVIEW

First edition – 1980-08-01 (standards.iteh.ai)

ISO 4174:1980 https://standards.iteh.ai/catalog/standards/sist/1d97204a-efcb-43c3-ae33-1dc85f8b8d6b/iso-4174-1980

UDC 633.1 + 633.3 : 532.546

Ref. No. ISO 4174-1980 (E)

Descriptors : agricultural products, grains (food), leguminous grains, ventilation, air flow, ventilators, head losses, measurement.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 4174 was developed by Technical Committee ISO/TC 34; Agricultural food products, and was circulated to the member bodies in September 1978. (standards.iteh.ai)

It has been approved by the member bodies of the following countries 380

Australia Brazil Bulgaria Canada Chile Cyprus Czechoslovakia Egypt, Arab Rep. of Ethiopia

https://standards.iteh.ai/ France Germany, F.R. Hungary India Iran Ireland Israel Kenya Korea, Rep. of

i/catalog/standards/sist/1d97204a-efcb-43c3-ae33-Libyan Arab Jamahiriya Mexico Philippines Poland Romania South Africa, Rep. of USSR Yugoslavia

The member body of the following country expressed disapproval of the document on technical grounds :

United Kingdom

© International Organization for Standardization, 1980

Cereals and pulses — Measurement of unit pressure losses due to single-dimension air flow through a batch of grain

0 Introduction

Application of the law proposed by Kozeny-Carman for flows within a porous medium has been considered for grain (in particular for cereals and pulses), and such application appears sufficiently well verified.

The value of the unit pressure loss depends on certain quantities characterizing the grain and the air :

 for a given type of grain (see figure 1), the pressure loss is largely influenced by its dimensions, its porosity (see figure 2), its water content (see figure 3) and, in particular, its apparent density at a point (see figure 4);

for a given type of air, the pressure loss depends on its temperature, its relative humidity, its density and, in particular, the velocity at which it enters the grain.

Experiments carried out by dimension categories allow two

parameters to be eliminated : the water content and the shape

(granulometry). The parameters which remain enable the 4:1980 of parameters characteristic coefficients of the medium to be determined and sister 1970 Device for measuring unit pressure losses (see porosity and specific area. The results obtained may be used to so-41 figure 5). forecast the pressure losses for various densities at a point.

Scope and field of application

This International Standard specifies a method of measuring unit pressure losses due to single-dimension air flow through a mass of grain, permitting calculation of the total pressure of a ventilation unit. This is equal to the sum of the pressure losses

- a) in the ventilation system (ducts, etc.);
- b) in the grain;

1

c) due to the passage of the air from the duct into the grain.

The pressure losses in the ventilation system and those due to the passage of the air from the duct into the grain can be considered as negligible in relation to the pressure losses in the grain if the air flow speed does not exceed certain limits :

- 8 m/s in the main duct;

- 4 m/s in the secondary duct;
- 0,25 m/s when entering the grain.

2 Reference

ISO 3507, Pyknometers.

3 Principle

An air flow under uniform conditions through a mass of grain gives rise to a pressure loss per metre of grain passed, which can be expressed as a function of the velocity at which the air enters the grain.

The corrected flow equation; which gives the unit pressure loss through the grain, is determined from the experimental curve.

984 Apparatus

The grain is placed in a transparent plastic cell consisting of a cylindrical tube containing two pressure meters 300 mm apart, each comprising two tubes with an internal diameter of 1 mm communicating with the grain and of diameter (*d*) greater or equal to five times the equivalent diameter (d_{eq}) of the product ($d > 5d_{eq}$). At the base is a pressure chamber and a fine mesh on which the grain can be packed.

A membrane compressor forces the air into a shock-absorbing bottle. The air then passes into a pressure chamber fitted with a needle-valve tap which can be opened and closed to adjust the air flow through the grain. The air flow is measured by a flow meter (for example a rotary meter).

Finally, the air pressure before the flow meter is measured by a manometric U-tube, and the pressure loss over 300 mm by a miniscope¹).

4.2 Thermometer recorder, to measure the temperature of the air entering the grain.

4.3 Ventilated psychrometer², to record the wet- and drybulb temperatures of the air during the test.

^{1) &}quot;Miniscope" ia s French term for an apparatus used for measuring pressures with great accuracy (= 0,1 Pa).

²⁾ An International Standard concerning ventilated psychrometers is in preparation.

4.4 Barometer.

4.5 Pyknometer, complying with ISO 3507.

5 Procedure

5.1 Preliminary operations

The cell is filled in layers of 40 mm; a constant mass is applied over the whole surface of each layer for a certain period so that the product is regularly and uniformly settled (for example, for a cell of diameter 400 mm, a mass of 150 g for 2 min is suitable).

After filling the cell, it is necessary to wait 3 to 4 h to allow initial settling of the grain, and to carry out a preliminary ventilation intended to put the apparatus in a condition in accordance with settling.

5.2 Drawing of experimental curves to show the pressure loss as a function of the air velocity

5.2.1 General

Determination of the pressure loss (Δp) as a function of the air DARD^{mercury}. EVIEW velocity (U_o) requires repetition of measurements for each curve drawn (the cell being refilled each time) : (Standards i a nearby meteorological office.

4.1).1)

 ρ_{c} :

 ϱ_{v} :

 p_{a} :

5.2.3 Parameters to be determined

cubic metre.

measured.

5.2.3.2 Other parameters

5.2.3.1 Parameters depending on the grain

which has occurred must be measured.

- a first curve is drawn while the flow is being reduced: $150.41\theta_{4.198}$ pry ambient air temperature, in degrees Celsius.

- a second curve is drawn while the flow is being increase/standards/sist/1d97204a-efcb-43c3-ae33ed. 1dc85f8b8d6b/iso-4174-1980

This is necessary to take account of the slight settling which occurs during the experiment and which, at the end of the experiment, might result in points above the true theoretical points.

From these two curves, a theoretically more accurate mean curve is drawn, especially if the apparent density at a point is taken as the mean of the apparent densities measured.

The experimental curves given by way of example (see figures 1, 2 and 3) each represent the means of the two curves obtained.

5.2.2 Measurements to be made

For the various flow-rates q_0 , in litres per minute, used during the experiment and measured by the flow meter, determine :

TU, the excess pressure in the measuring box, in conventional millimetres of mercury (mmHg), measured using the manometric U-tube (see 4.1);

 $\theta_{\rm c}$: Temperature of the air entering the grain, in degrees Celsius.

 Δp , the pressure loss, in conventional millimetres of

Apparent density at a point in the grain, in kilograms per

When drawing each curve, weighings must be taken

both before and after settling, and the amount of settling

The value adopted is the mean of the apparent densities

Atmospheric pressure, in conventional millimetres of

Density of the grain, in kilograms per cubic metre.

This is determined using the pyknometer (4.5).

mercury or in pascals, recorded by the miniscope (see

This is measured using the thermometer recorder (4.2).

w: Water vapour content of the air, in grams per kilogram.

This is determined using the psychrometer (4.3) and a humidity graph.

v: Specific volume of the air, in cubic metres per kilogram.

This is determined using the humidity graph.

A: Cross-sectional area of the cell, in square metres.

The following are calculated :

 ϱ_a : Density of the ambient air, in kilograms per cubic metre

$$\varrho_a = \frac{1 + w \times 10^{-3}}{v}$$

1) The pressure loss is often expressed in conventional millimetres of water (mmH2O) :

 $1 \text{ mmH}_2\text{O} = 9,806 65 \text{ Pa} (exactly)$

and

1 mmHg = 133,322 Pa

where

w is the water vapour content of the air, in grams per kilogram;

 $\boldsymbol{\nu}$ is the specific volume of the air, in cubic metres per kilogram.

 ρ_{o} : Corrected density of the air, in kilograms per cubic metre.

For further calculations, it is necessary to correct all the physical measurements to 21 °C and 760 mmHg :

$$\varrho_{\rm o} = \varrho_{\rm a} \times \frac{T}{T_{\rm o}} \times \frac{p_{\rm o}}{p}$$

where

 $\varrho_{a}~$ is the density of the ambient air, in kilograms per cubic metre;

 $T_{\rm o}$ is the reference thermodynamic temperature, in kelvins (= 294 K);

T is the ambient air thermodynamic temperature in D where EVIEW where EVIEW

 p_0 is the reference atmospheric pressure in conventional site p_0 is the corrected density of the air, in kilograms per millimetres of mercury (= 760 mmHg); cubic metre;

p is the corrected atmospheric pressure, in conventional T_o is the reference thermodynamic temperature, in kelvins millimetres of mercury. 1dc85f8b8d6b/iso-4174-1980

5.2.4 Calculations to be made to determine U_0 and ΔP

 $\varrho_{\rm r}$: Density of the air in the flow meter, in kilograms per cubic metre

$$\varrho_{\rm r} = \varrho_{\rm o} \times \frac{p_{\rm 1}}{p_{\rm o}}$$

where

 ϱ_{o} is the corrected density of the air, in kilograms per cubic metre;

 p_{o} is the reference atmospheric pressure, in conventional millimetres of mercury (= 760 mmHg);

 p_1 is the pressure measured before the flow meter, in conventional millimetres of mercury ($p_1 = p + TU$).

 $q_{\rm r}$: Real flow on leaving the flow meter, in litres per minute

 $q_{\rm r} = q_{\rm o} \sqrt{\frac{\varrho_{\rm o}}{\varrho_{\rm r}}}$

where

 q_0 is the flow in the flow meter, in litres per minute;

 $\varrho_{\rm o}$ is the corrected density of the air, in kilograms per cubic metre;

 $\varrho_{\rm r}~$ is the density of the air in the flow meter, in kilograms per cubic metre.

 $p_{\rm c}$: Pressure in the cell, in conventional millimetres of mercury

$$p_{\rm c} = p + \frac{1}{2}\Delta p$$

where

p is the corrected atmospheric pressure, in conventional millimetres of mercury;

 Δp is the pressure loss recorded by the miniscope, in conventional millimetres of mercury.

 $arrho_{
m c}$: Density of the air in the cell, in kilograms per cubic metre

$$\varrho_{\rm c} = \varrho_{\rm o} \times \frac{T_{\rm o}}{T_{\rm c}} \times \frac{p_{\rm c}}{p_{\rm o}}$$

 $T_{\rm c}$ is the thermodynamic temperature of the air entering the grain ($T_{\rm c} = 273 + \theta_{\rm c}$);

 p_{o} is the reference atmospheric pressure, in conventional millimetres of mercury (= 760 mmHg);

 $p_{\rm c}$ is the pressure in the cell, in conventional millimetres of mercury.

 $q_{\rm c}$: Air flow in the cell, in litres per minute

$$q_{\rm c} = q_{\rm r} \sqrt{\frac{\varrho_{\rm r}}{\varrho_{\rm c}}}$$

where

 $q_{\rm r}$ is the real flow on leaving the flow meter, in litres per minute;

 ρ_r is the density of the air in the flow meter, in kilograms per cubic metre;

 $\varrho_{\rm c}$ $\,$ is the density of the air in the cell, in kilograms per cubic metre.

 U_{o} : Air velocity in the cell, in metres per second

$$U_{\rm o} = \frac{q_{\rm c}}{A}$$

where

 $q_{\rm c}$ is the air flow in the cell, in cubic metres per second;

A is the cross-sectional area of the cell, in square metres.

 ΔP : Unit pressure loss, in pascals (per metre)

$$\Delta P = \Delta p \times \frac{100}{30}$$

where $\Delta p\,$ is the pressure loss, in pascals, recorded by the miniscope.

5.2.5 Presentation of results

Recorded or calculated results shall be given in a table as follows :

Flow meter	τu	Δp	Δp	q _o	р ₁	p _r	Qr	p _c	Qc	q_{c}	q_{c}	Uo	ΔP
(standard scale)	mmHg	mmH ₂ O	mmHg	l/min	mmHg	kg/m ³	l/min	mmHg	kg/m ³	l/min	m ³ /s	m/s	Pa
140													
130													
120									* .				
110			i	Teh	STA	ND		PR	FVI	TW			
100													
90					(sta	inda	rds.i	teh.a	i)				
80													
70						ISO	4174:198	<u>0</u>					
60			http	s://standar	ds.iteh.ai/	catalog/sta	andards/sig	st/1d9720	4a-efcb-4	3c3-ae33	-		
50					10	lc85f8b80	16b/iso-41	74-1980					
40													

The unit pressure losses (ΔP) are then recorded on "log-log 2 module" paper as a function of the velocities at which the air enters the grain (U_0) .

5.3 Flow equation

After the experimental curves have been drawn, the regression equation given by Kozeny-Carman is applied as follows :

$$\frac{\Delta P}{\varrho_{\rm c} l} = \frac{k \nu (1-\epsilon)^2 S^2}{g_{\rm n} \epsilon^3} U_{\rm o} + \frac{h \beta (1-\epsilon) S}{g_{\rm n} \epsilon^3} U_{\rm o}^2$$

where

 ΔP is the pressure loss, in pascals, per metre of the product:

 $arrho_{
m c}$ is the density of the air in the cell, in kilograms per cubic metre;

l is the length, in metres, corresponding to $\Delta P (l = 1 \text{ m})$;

k is a constant (= 5);

is the kinematic viscosity of the air, in metres squared ν per second :

$$v = 0,152 \times 10^{-4} \left[1 + (\theta_c - 20) 0,006\right] \frac{760}{p} \frac{1}{\Delta P} = \frac{q_c k v S'^2 (1 - \epsilon)^2}{q_c \epsilon^3} U_0 + \frac{q_c h \beta S' (1 - \epsilon)}{q_c \epsilon^3} U_0^2$$

ISO 4<u>174:1980</u> θ_{c} being the temperature of the air entering the grain and sist/1d97204a-efcb-43c3-ae33in degrees Celsius; 1dc85f8b8d6b/iso-4174-1980

p being the corrected atmospheric pressure, in conventional millimetres of mercury;

 ϵ is the porosity, i.e. the volume of space per unit volume at a point :

$$\epsilon = 1 - \frac{\varrho_{\rm s}}{\varrho_{\rm v}}$$

 $\varrho_{\rm s}$ being the apparent density at a point in the grain, in kilograms per cubic metre;

 $\rho_{\rm v}$ being the density of the grain, in kilograms per cubic metre;

S is the specific area of the product, in square metres per solid cubic metre;

 $h\beta$ is the Burke-Plummer constant;

g_n is the standard acceleration of free fall, in metres per second squared (= $9,806\ 65\ m/s^2$);

 $U_{\rm o}$ is the velocity at which the air enters the grain, in metres per second.

From two suitably chosen points, the corresponding values of S and $h\beta$ may be deduced. Generally the adjustment calculations are made from experimental points using the least-squares method.

5.4 Corrected flow equation

In practice, a flow equation taking a wall correction into account is used to obtain the true value of S:

$$S' = S - \frac{2}{d(1-\epsilon)}$$

where d is the diameter, in metres, of the cell.

Expression of results 6

For a given batch of grain and knowing

- the density of the grain,
- the apparent density at a point in the grain, and
- the velocity at which the air enters the grain,

the corrected flow equation enables the unit pressure losses due to single-dimension air flow through the grain to be determined :

$$\frac{vS'^2(1-\epsilon)^2}{g_{\rm n}\epsilon^3}U_{\rm o} + \frac{\varrho_{\rm c}\ h\beta S'(1-\epsilon)}{g_{\rm n}\epsilon^3}U_{\rm o}^2$$

7 **Practical application**

7.1 Forecast of pressure losses for different apparent densities at a point

The experimental results relate to lightly settled grain. In reality, the apparent density at a point in a silo varies according to the height fallen by the grain and the storage height.

It is therefore necessary to formulate equations showing the unit pressure losses for different apparent densities at a point; as S' and $h\beta$ are known, this can be done using the formula

$$\epsilon = 1 - \frac{\varrho_{\rm s}}{\varrho_{\rm v}}$$

7.2 Total pressure losses

The total pressure losses are equal to

 $\Delta P \times h$

where h is the height of the cell, in metres, in the case of an upward-flowing ventilation system or, in other cases, the distance travelled by the air, in metres.

8 Test report

The test report shall show the method used and the results obtained. It shall also clearly state the method of expression used and any operating conditions not specified in this International Standard or regarded as optional, as well as any circumstances that may have influenced the results.

The report shall include all details required for complete identification of the sample.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 4174:1980</u>

https://standards.iteh.ai/catalog/standards/sist/1d97204a-efcb-43c3-ae33-1dc85f8b8d6b/iso-4174-1980

Figure 1 - Unit pressure losses due to single-dimension air flow through four types of grain

7