International Standard

Magnesium alloys — Determination of zinc content — Flame atomic absorption spectrometric method

Alliages de magnésium — Dosage du zinc — Méthode par spectrométrie d'absorption atomique dans la flamme

First edition – 1981-12-01 ITeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 4194:1981</u> https://standards.iteh.ai/catalog/standards/sist/c890fa65-eccf-4121-8ed6-36232e60391f/iso-4194-1981

UDC 669.71.5 : 543.422 : 546.47

Ref. No. ISO 4194-1981 (E)

Descriptors : magnesium alloys, chemical analysis, determination of content, zinc, atomic absorption spectroscopic method.

4194

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

IEW International Standard ISO 4194 was developed by Technical Committee ISO/TC 79, Light metals and their alloys, and was circulated to the member bodies in December (standards.iten.al) 1980.

It has been approved by the member bodies of the following countries 981

https://standards.iteh.ai/catalog/standards/sist/c890fa65-eccf-4121-8ed6-

Australia	
Australia	
Austria	
Brazil	
Canada	
China	
Czechoslovakia	
Egypt, Arab Rep. of	
France	

Germany, F. R. 36232e6South Afrida, Rep lof Hungary India Italy Japan Korea, Rep. of Poland Romania

Spain Sweden Switzerland United Kingdom USA USSR

The member body of the following country expressed disapproval of the document on technical grounds :

Netherlands

International Organization for Standardization, 1981 (Ĉ)

Magnesium alloys — Determination of zinc content — Flame atomic absorption spectrometric method

Scope and field of application 1

This International Standard specifies a flame atomic absorption spectrometric method for the determination of the zinc content of magnesium alloys.

The method is applicable to products having zinc (Zn) contents between 0.1 and 6 % (m/m).

3.6 Zinc, standard solution corresponding to 1 g of Zn per litre.

Prepare this standard solution by one of the following methods :

3.6.1 Weigh, to the nearest 0,1 mg, 1 g of extra pure zinc (purity ≥ 99,99 %), transfer it to a 400 ml beaker and cover with a watch glass. Add, in small portions, 25 ml of the hydrochloric acid solution (3.2) and heat gently, if necessary, to complete the dissolution. After cooling, quantitatively transfer it to a 1 000 ml volumetric flask, dilute to the mark and mix.

2 Principle iTeh STANDARD

Dissolution of a test portion in hydrochloric acid solution in the presence of hydrogen peroxide and hydrofluoric acid. Aspir 3.6.2 Weigh, to the nearest 0,1 mg, 1,26 g of zinc oxide ation of the solution into an air-acetylene flame and comparison of the absorbance of resonance energy of zinc by the test solu-94-198 tion (wavelength of 213,9 nm normally) with that of standard rds/si solutions.

Reagents 3

During the analysis, use only reagents of recognized analytical grade and distilled or deionized water.

Magnesium, extra pure (purity 99,99 %), free from zinc. 3.1

3.2 Hydrochloric acid, ρ approximately 1,19 g/ml, about 38 % (m/m) or approximately 12 mol/l solution.

Hydrogen peroxide, about 30 % (m/m) solution. 3.3

3.4 Hydrofluoric acid, ρ approximately 1,13 g/ml, about 40 % (m/m) solution.

3.5 Magnesium, 1 g/l solution.

Weigh, to the nearest 0,001 g, 1 g of the extra pure magnesium (3.1), transfer it to a 250 ml beaker and cover with a watch glass. Add 50 ml of water and, in small portions, 20 ml of the hydrochloric acid solution (3.2), warming, if necessary, in order to complete the dissolution. Add 5 drops of the hydrogen peroxide solution (3.3) and boil for 5 min. After cooling, quantitatively transfer the solution so obtained to a 1 000 ml volumetric flask, dilute to the mark and mix.

1 ml of this solution contains 1 mg of zinc.

(ZnO), previously calcinated at 1 000 °C for 1 h and cooled in a desiccator. Transfer it to a 400 ml beaker, and dissolve it in 25 m of the hydrochloric acid solution (3.2). Dilute the solu-36232e60391f/iso-419tion,98uantitatively transfer it to a 1 000 ml volumetric flask, dilute to the mark and mix.

1 ml of this solution contains 1 mg of zinc.

3.7 Zinc, standard solution corresponding to 0,050 g of Zn per litre.

Transfer 50,0 ml of the standard zinc solution (3.6) to a 1 000 ml volumetric flask, dilute to the mark and mix.

1 ml of this solution contains 0,05 mg of zinc.

3.8 Zinc, standard solution corresponding to 0,020 g of Zn per litre.

Transfer 20,0 ml of the standard zinc solution (3.6) to a 1 000 ml volumetric flask, dilute to the mark and mix.

1 ml of this solution contains 0,020 mg of zinc.

Apparatus 4

Normal laboratory apparatus and

4.1 Burette, graduated in 0,05 ml.

4.2 Atomic absorption spectrometer, fitted with an airacetylene burner.

4.3 Compressed air (laboratory installation or gas cylinders).

4.4 Acetylene, in gas cylinders.

4.5 Zinc hollow-cathode lamp.

5 Sampling

5.1 Laboratory sample¹⁾

5.2 Test sample

Use chips, not more than 1 mm thick, obtained by milling or drilling.

6 Procedure

6.1 Test portion

Weigh, to the nearest 0,001 g, 1 g of the test sample (5.2).

6.2 Preparation of the calibration curve TANDA

6.2.1 Preparation of the standard solutions (standar

Standard zinc Corresponding Zinc content solution mass of zinc (3.7) ml % (m/m)ma 0* 0 0 0.05 1.0 1.0 2,0 0,10 2,0 0,15 3,0 3.0 4,0 0,20 4,0 0,25 5.0 5.0 6,0 0,30 6,0

Blank test of calibration curve reagents.

6.2.2 Spectrometric measurements

Switch on the spectrometer (4.2), fitted with the zinc hollowcathode lamp (4.5), sufficiently in advance to allow it to stabilize. Adjust the wavelength to about 213,9 nm, and the sensitivity and the slot according to the characteristics of the apparatus. Adjust the pressure of the air and acetylene according to the characteristics of the aspirator-burner, so as to obtain a clear, non-luminous, oxidizing flame.

Aspirate the standard solutions (6.2.1.1 or 6.2.1.2) into the flame and measure their absorbances. Take care to ensure that the volume of standard solutions aspirated per unit time into the flame is kept constant throughout the procedure for

6.2.1.1 Zinc contents between 0,1 and 1,0 % (m/m) <u>ISO 41 preparation of the calibration curve.</u>

https://standards.iteh.ai/catalog/standards/sist/c890fa65-eccf-4121-8ed6-Into a series of seven 100 ml volumetric flasks, introduce3the60391f150-4194-1981

Into a series of seven 100 ml volumetric flasks, introduce the volumes of the standard zinc solution (3.8) shown in table 1, using the burette (4.1). Add to each flask, 20 ml of the magnesium solution (3.5), dilute to the mark and mix.

Table 1

Standard zinc solution (3.8)	Corresponding mass of zinc	Zinc content
ml	mg	% (<i>m/m</i>)
0*	0	0
1,0	0,02	0,1
3,0	0,06	0,3
5,0	0,10	0,5
7,0	0,14	0,7
9,0	0,18	0,9
10,0	0,20	1,0

Blank test of calibration curve reagents.

6.2.1.2 Zinc contents between 1,0 and 6,0 % (m/m)

Into a series of seven 100 ml volumetric flasks, introduce the volumes of the standard zinc solution (3.7) shown in table 2, using the burette (4.1). Add to each flask, 5 ml of the magnesium solution (3.5), dilute to the mark and mix.

6.2.3 Plotting the graph

Plot a graph, having, for example, the masses, in milligrams, of zinc contained in 100 ml of the standard solutions as abscissae, and the corresponding values of absorbance, corrected for the blank test of the calibration curve reagents (zero term), as ordinates.

6.3 Determination

6.3.1 Preparation of the test solution

Place the test portion (6.1) in a 250 ml beaker and cover with a watch glass. Add about 50 ml of water, and, in small portions, 20 ml of the hydrochloric acid solution (3.2), warming gently, if necessary, to complete the dissolution. Add 5 drops of the hydrogen peroxide solution (3.3). When the reaction is complete, add 2 drops of the hydrofluoric acid solution (3.4) and boil for 5 min. Filter, if necessary, quantitatively transfer the solution to a 100 ml volumetric flask, diluted to the mark with water and mix.

Table 2

¹⁾ The sampling of magnesium alloys will form the subject of a future International Standard.

6.3.1.1 Zinc contents between 0,1 and 1,0 % (m/m)

Transfer a 10,0 ml aliquot portion of the solution (6.3.1) to a 500 ml volumetric flask, dilute to the mark and mix.

Use calibration curve 6.2.1.1 for this solution.

6.3.1.2 Zinc contents between 1,0 and 6,0 % (*m*/*m*)

Transfer a 5,0 ml aliquot portion of the solution (6.3.1) to a 1 000 ml volumetric flask, dilute to the mark and mix.

Use calibration curve 6.2.1.2 for this solution.

6.3.2 Blank test

Carry out a blank test, in parallel with the analysis, using the same procedure and the same quantities of all reagents used in the determination, but replacing the test portion by 0,5 g, weighed to the nearest 0,001 g, of the extra pure magnesium (3.1).

6.3.3 Spectrometric measurements

8 Test report Measure the absorbances of the test solution (6.3.1.1 or 6.3.1.2), the blank test solution (6.3.2) and the appropriate standard solutions (6.2.1.1 or 6.2.1.2), proceeding as specified in 6.2.2, and taking care to bracket the measurement of about 1

sorbance of the test solution and of the blank test solution be-

tween two standard solutions having zinc contents as close as possible, respectively, to that to be determined.

ISO 4194:1981 b) the reference of the method used; https://standards.iteh.ai/catalog/standards/sist/c890fa65-eccf-4121-8ed6-

36232e60391f/iso-4194- c) 8 the results and the method of expression used;

7 Expression of results

By means of the calibration curve, determine the quantity of zinc corresponding to the spectrometric measurements of the test solution and of the blank test solution.

The zinc, Zn, content, expressed as a percentage by mass, is given by the formula

$$\frac{(m_2 - m_1) \times R}{10 \times m_0}$$

where

 m_0 is the mass, in grams, of test portion in the test solution;

 m_1 is the mass, in milligrams, of zinc found in the blank test solution:

 m_2 is the mass, in milligrams, of zinc found in the test solution;

R' is the ratio between the dilution-volume of the test solution and the volume of the standard solutions for calibration (R = 50 for test solutions prepared in accordance with 6.3.1.1 and R = 200 for test solutions prepared in accordance with 6.3.1.2).

PRE

The test report shall include the following particulars :

identification of the test sample;

d) any unusual features noted during the determination;

e) any operation not included in this International Standard, or regarded as optional.

iTeh STANDARD PREVIEW (standards.iteh.ai) This page intentionally left blank

<u>ISO 4194:1981</u> https://standards.iteh.ai/catalog/standards/sist/c890fa65-eccf-4121-8ed6-36232e60391f/iso-4194-1981

iTeh STANDARD PREVIEW (standards.iteh.ai) This page intentionally left blank

<u>ISO 4194:1981</u> https://standards.iteh.ai/catalog/standards/sist/c890fa65-eccf-4121-8ed6-36232e60391f/iso-4194-1981

iTeh STANDARD PREVIEW (standards.iteh.ai) This page intentionally left blank

<u>ISO 4194:1981</u> https://standards.iteh.ai/catalog/standards/sist/c890fa65-eccf-4121-8ed6-36232e60391f/iso-4194-1981