INTERNATIONAL STANDARD

Fifth edition 1993-11-01

Truck and bus tyres and rims (metric series) —

Part 1:

Tyres iTeh STANDARD PREVIEW Pneumatiques et jantes (séries millimétriques) pour camions et autobus — (standards.iteh.ai) Partie 1: Pneumatiques

<u>ISO 4209-1:1993</u> https://standards.iteh.ai/catalog/standards/sist/38b82045-4296-4683b909-31e923a787e6/iso-4209-1-1993

INILINATIONAL

JUU

Reference number ISO 4209-1:1993 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

(standards.iteh.ai)

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote sist/38b82045-4296-4683-

International Standard ISO 4209-1 was prepared by Technical Committee ISO/TC 31, *Tyres, rims and valves,* Sub-Committee SC 4, *Trucks and bus tyres and rims.*

This fifth edition cancels and replaces the fourth edition (ISO 4209-1:1988), of which it constitutes a technical revision.

ISO 4209 consists of the following parts, under the general title *Truck and bus tyres and rims (metric series)*:

- Part 1: Tyres
- Part 2: Rims

Annexes A, B and C of this part of ISO 4209 are given for information only.

© ISO 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Truck and bus tyres and rims (metric series) —

Part 1:

Tyres

1 Scope

4 Tyre designation

This part of ISO 4209 specifies the designation. The designation of the tyre shall be shown on its sidewall dimensions and load ratings of the metric series of tyres primarily intended for trucks and buses. (standards.iten.al)

It applies to bias-belted, diagonal and radial tyres for — size and construction (see 4.1); trucks and buses, mounted on 5° tapered rims and <u>on 15%09-1:1993</u>— service condition characteristics (see 4.2). tapered (drop-centre) rims. <u>https://standards.iteh.ai/catalog/standards/sist/38b82045-4296-4683-</u>

It is also applicable to different concepts and types of types and rims; in these cases, however, appropriate rim/section ratios K_1 , coefficients K_2 , K_3 , C_R and construction codes have been added to tables 2 and 3.

ISO 4209-2 deals with requirements for rims.

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this part of ISO 4209. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this part of ISO 4209 are encouraged to investigate the possibility of applying the most recent edition of the standard indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 4223-1:1989, Definitions of some terms used in the tyre industry — Part 1: Pneumatic tyres.

3 Definitions

For the purposes of this part of ISO 4209, the definitions in ISO 4223-1 apply.

vres 4.19 Size and construction

The size and construction characteristics shall be indicated as follows:

	Nominal /	Nominal	Tyre	Nominal
	section	aspect	construction	rim diameter
	width	ratio	code	code
or				
	Nominal	Nominal	Tyre	Nominal
	section	aspect	construction	rim
	width	ratio	code	diameter

(See 4.1.4.)

0

4.1.1 Nominal section width

The nominal section width shall be expressed in millimetres. For tyres fitted to 5° taper rims and 15° taper rims (code-designated), the nominal tyre section width shall end in 5.

4.1.2 Nominal aspect ratio

The nominal aspect ratio shall be expressed as a percentage and shall be a multiple of 5.

4.1.3 Tyre construction code

The tyre construction code shall be as follows:

B for bias-belted construction;

- D for diagonal/bias construction;
- R for radial construction.

NOTE - Other codes will be established for new concepts (constructions) of tyres.

4.1.4 Nominal rim diameter

The nominal rim diameter shall be expressed by a code for 5° tapered bead seat rims and 15° tapered bead seat (drop-centre) rims (see table 1 for code correlations).

However, it shall be expressed in millimetres for new and future concepts where the use of existing tyres on new concept rims or of new concept tyres on existing rims would be incompatible.

4.2 Service condition characteristics

The characteristics shall be indicated as follows:

Load index	1	Load index	
single	/	dual	Speed symbol

4.2.1 Load index

The load index is a numerical code associated with the maximum load a tyre can carry at the speed indicated by larch .iten.al) its speed symbol under the service conditions specified by the tyre manufacturer. See table 4.

ISO 4209-1:1993

4.2.2 Speed symbol

https://standards.iteh.ai/catalog/stan5afc2/Measuringfrim2width8Rm

The speed symbol indicates the speed at which the tyre can carry the load corresponding to its load index under the service conditions specified by the tyre manufacturer. See table 5.

4.3 Other service characteristics

4.3.1 In the case of tubeless tyres, the marking "TUBELESS" shall be shown on the tyre.

4.3.2 In the case of a preferred direction of rotation of the tyre, an arrow shall be used to indicate that direction.

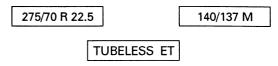
4.3.3 In the case of special tread tyres (see table 2), the symbol "ET" shall be shown on the tyre.

4.4 Example

A tyre having

a) a size and construction of:

- nominal section width 275 mm,
- nominal aspect ratio 70 %,
- radial construction,
- nominal rim diameter code 22.5;


b) service condition characteristics of:

- single load 2 500 kg,
- dual load 2 300 kg,
- reference speed 130 km/h;

c) other service characteristics:

- tubeless.
- special tread;

shall be marked

5 Tyre dimensions

5.1 Calculation of "design tyre" dimensions

For the choice of coefficients K_1 (rim section ratio) and K_2 , see table 2.

5.1.1 Theoretical rim width, R_{th}

The theoretical rim width, $R_{\rm th}$, is equal to the product of the nominal section width, $S_{\rm N}$, and the rim/section ratio, i'l'eh S'l'ANDA $R_{\rm th} = K_1 S_{\rm N}$

b909-31e923a787e file measuring rim width, $R_{\rm m}$, is the width of the existing rim nearest to the theoretical rim width, $R_{\rm th}$. See table 1 for rim widths of 5° tapered and 15° tapered (drop-centre) rims.

5.1.3 Design tyre section width, S

The design tyre section width, S, is the nominal section width, $S_{\rm N}$, transferred from the theoretical rim, $R_{\rm th}$ to the measuring rim, $R_{\rm m}$:

$$S = S_{\mathsf{N}} + K_{\mathsf{2}} \left(R_{\mathsf{m}} - R_{\mathsf{th}} \right)$$

rounded to the nearest whole number.

5.1.4 Design tyre section height, H

The design tyre section height, H, is equal to the product of the nominal section width, S_N , and the nominal ratio, H/S (H/S expressed as a percentage):

$$H = S_{N} \frac{H/S}{100}$$

rounded to the nearest whole number.

5.1.5 Design tyre overall diameter, D_o

The design tyre overall diameter, D_0 , is the sum of the nominal rim diameter, Dr, plus twice the design tyre section height, H:

$$D_{o} = D_{r} + 2H$$

For those tyres using a nominal rim diameter code, see table 1 for the value of D_r to be used.

5.1.6 Values

The relevant dimensions for the metric series of truck and bus tyre measuring rim width, design section width and design section height are shown in annexes A and B; for tyres of a given series, with a nominal tyre section over 205, it is recommended that they be in increments larger than 10.

5.2 Calculation of "maximum overall tyre dimensions in service"

These calculations are for use by vehicle manufacturers in designing for tyre clearances.

5.2.1 Maximum overall width in service, W_{max}

The maximum overall width in service, W_{max} , is equal to the product of the design tyre section width, *S*, and the appropriate coefficient, *a* (see table 2):

 $W_{max} = Sa$

It includes protective ribs, lettering, embellishments, manufacturing tolerances and growth due to service.

5.2.2 Maximum overall diameter in service, Domax

The maximum overall diameter in service, $D_{o,max}$, is equal to the nominal rim diameter, D_{r} , plus twice the product of the design tyre section height, H , and the appropriate9-1:19	5° tapered rims	15º tapered (drop-centre) rims	Rim width mm
coefficient, b (see table 2): https://standards.iteh.ai/catalog/standards		5-4683	88,9
b909-31e923a787e6/iso-	4209-1-4903	_	101,6
$D_{0,\text{max}} = D_{r} + 2 Hb$	4.50		114,3
	5.00	_	127
It includes manufacturing tolerances, the different types of	-	5.25	133,5
tread patterns and growth due to service.	5.50	_	139,7
	6.00	6.00	152,5
	6.50	_	165,1
5.3 Minimum dual spacing, (MDS)	_	6.75	171,5
	7.00	—	177,8
5.3.1 The minimum dual spacing is a guideline value	7.50	7.50	190,5
• • •	8.00	-	203,2
equal to the product of the design tyre section width, S,	-	8.25	209,5
and the appropriate coefficient, <i>K</i> ₃ [see table 2 b)]:	8.50	_	215,9
	9.00	9.00	228,5
$MDS = SK_3$	9.50		241,3
It is referred to a turn load apporting to the load index in		9.75	247,5
It is referred to a tyre load according to the load index, in	10.00		254
dual application shown in the service characteristics on	10.50	10.50	266,5
the tyre at an inflation pressure applicable for normal	11.25	<u> </u>	285,8
highway service.		11.75	298,5
		12.25	311
5.3.2 The design tyre section width, <i>S</i> , will change 2,5 mm	13.00	13.00	330
for each 0.25 change in rim width code. The minimum	14.00	14.00	355,5
dual spacing shall be adjusted accordingly.	15.00	15.00	381
	1	16.00	400 5

Table 1 — Nominal rim diameter code and rim width code

a) Nominal rim diameter code

Code

16.00

18.00

5° tapered rims	o de 15° tapered (drop-centre) rims	Nominal rim diameter, D _r mm
10	_	254
12	_	305
13	_	330
14	_	356
	14.5	368
15		381
16		406
17		432
—	17.5	445
18	_	457
	19.5	495
20	_	508
	20.5	521
22	-	559
—	22.5	572
24		610
	24.5	622
Rim width cod		

406,5

457

Structur e		Tyre construction		Coefficients			
		code	K ₂	b1)	a		
Bias-belted		В	0,4	1,07	1,08		
Diagonal		D	0,4	1,07	1,08		
Radial		R	0,4	1,04	1,05		
b) Coefficient	s <i>K</i> ₁ , <i>K</i> ₃				1		
Tyre construction code	Type of rim	Nominal aspect ratio			Minimum dual spacing		
LUGE		H/S	К1		K3		
	5° tapered	100 to 65 ²⁾	0,70		1,15		
B, D, R	15° tapered (drop-centre)	90 to 65 ²⁾	0,75		1,125		
NOTE Othe	r factors may be	established for new conc	epts (construct	tions) of tyre	s.		
Bias-beltec diagonal: b	1 _{1,09} en S	.3.3): FANDARE standards.i r annexes will established					

Table 2 — Coefficients for calculation of tyre dimensions

5.4 Permitted rim widths

https://standards.iteh.ai/catalog/standards/sist/38b82045-4296-4683b909-31e923a787e6/iso-4209-1-1993

The range of permitted rim widths, in millimetres, is determined, for each nominal section width, by multiplying the nominal section width, S_N , by the coefficients, C_R , presented in table 3, i.e.

minimum rim width: $C_{R, \min} \times S_N$

maximum rim width: $C_{R, \max} \times S_N$

Type of rim	Nominal aspect ratio	Nominal section width	Coefficients for calculation of recommended rim width ¹⁾ C_R		
	H/S	S _N			
		mm	min.	max.	
5° tapered	100 ≤ <i>H/S</i> ≤ 65	All	0,65	0,80	
	90 ≤ <i>H/S</i> ≤ 75	≤ 215	0,65	0,80	
15° tapered		≥ 225	0,675	0,80	
	70 ≤ <i>H</i> / <i>S</i> ≤ 65	All	0,675	0,85	

 Table 3 — Coefficients for calculation of rim widths for truck and bus tyres related to nominal aspect ratio II/S

6 Tyre dimension tables

Examples of a few sizes in a tyre dimension table are shown in clauses C.2 and C.3. The figures shown in the column headed "Rim" are codes related to measuring rim width, R_m (see table 1 for code correlations).

7 Method of measurement of tyre dimensions

Before measuring, tyres shall be mounted on the measuring rim, inflated to the recommended pressure, and allowed to stand for a minimum of 24 h at normal room temperature, after which the inflation pressure shall be readjusted to the original value.

8 Load ratings

8.1 Tyre load-carrying capacity

Load indexes are shown in table 4.

8.2 Speed symbol

Speed symbols are shown in table 5.

8.3 Load-carrying capacity at various speeds

When the tyre is fitted on a vehicle with a maximum speed capability different from the tyre reference speed, variations of load are granted in relation to the load corresponding to the load index (see table 6). To obtain improved operating performance under these conditions, inflation pressures higher than the basic pressure may be required.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 4209-1:1993</u> https://standards.iteh.ai/catalog/standards/sist/38b82045-4296-4683b909-31e923a787e6/iso-4209-1-1993

Load Index (LI)	TLCC kg	Load Index (LI)	TLCC kg	Load Index (LI)	TLCC kg	Load Index (LI)	TLCC kg	Load Index (LI)	TLCC kg	Load Index (니)	TLCC kg	Load Index (LI)	TLCC kg
0	46	40	140	80	450	120	1 400	160	4 500	200	14 000	240	45 000
1	46,2	41	145	81	462	121	1 450	161	4 625	201	14 500	241	46 250
2	47,5	42	150	82	475	122	1 500	162	4 750	202	15 000	242	47 750
3	48,7	43	155	83	487	123	1 550	163	4 875	203	15 500	243	48 750
4	50	44	160	84	500	124	1 600	164	5 000	204	16 000	244	50 000
5	51,5	45	165	85	515	125	1 650	165	5 150	205	16 500	245	51 500
6	53	46	170	86	530	126	1 700	166	5 300	206	17 000	246	53 000
7	54,5	47	175	87	545	127	1 750	167	5 450	207	17 500	247	54 500
8	56	48	180	88	560	128	1 800	168	5 600	208	18 000	248	56 000
9	58	49	185	89	580	129	1 850	169	5 800	209	18 500	249	58 000
10	60	50	190	90	600	130	1 900	170	6 000	210	19 000	250	60 000
11	61,5	51	195	91	615	131	1 950	171	6 150	211	19 500	251	61 500
12	63	52	200	92	630	132	2 000	172	6 300	212	20 000	252	63 000
13	65 67	53	206	93	650 670	133	2 060	173	6 500	213	20 600	253	65 000
14	67	54	212	94	670	134	2 120	174	6700	214	21 200	254	67 000
15	69	55	218	95	690 710	135	2 180	175	6 900	215	21 800	255	69 000
16 17	71	56	224	96 97	710 730	136 137	2 240	176	7 100	216	22 400	256	71 000
17	73 75	57 58	230 236	97 98	750	137	2 300 2 360	177 178	7 300 7 500	217 218	23 000 23 600	257 258	73 000 75 000
19	77,5	59	230	99	775	130	2 300	178	7 750	218	23 000	258	77 500
20	80	60	250	100	800	140	2 500	180	8 000	220	25 000	260	80 000
21	82,5	61	257	101	825	141	2 575	181	8 250	221	25 750	261	82 500
22	85	62	265	102	850	142	2 650	182	8 500	222	26 500	262	85 000
23	87,5	63	272	103	875	143	2 725	183	8 750	223	27 250	263	87 500
24	90	64	280	104	900	144	2 800	184	9 000	V2 24	28 000	264	90 000
25	92,5	65	290	105	925	145	2 900	185	9 250	225	29 000	265	92 500
26 27	95 07 5	66	300	106 107	950 975	146a 147	3 000 3 075	186 a 187	9 500 9 750	226	30 000	266	95 000
27	97,5 100	67 69	307 315	107	1 000	147	3 150	187	10 000	227 228	30 750 31 500	267 268	97 500 100 000
28	100	68 69	315	108	1 0 3 0	149	2,3025010	Q 3 189	10 300	228	32 500	268	103 000
						100		<u></u>					
30	106	70	335	ntps://etan	dandocoeh	ai/cat500g/	stand50ds	/sist/39082	045600	46230	33 500	270	106 000
31	109	71	345	111	10909	31e923a7	87 3.4 590-	4209191119	910 900	231	34 500	271	109 000
32	112	72	355	112	1 120	152	3 550	192	11 200	232	35 500	272	112 000
33	115	73	365	113	1 150	153	3 650	193	11 500	233	36 500	273	115 000
34	118	74	375	114	1 180	154	3 750	194	11 800	234	37 500	274	118 000
35 36	121	75 76	387	115	1 215 1 250	155 156	3 875 4 000	195 196	12 150 12 500	235 236	38 750 40 000	275	121 000
36	125		400 412	116	1 250	156	4 000 4 125	196	12 500			276	125 000
37	128 132	77 78	412 425	117 118	1 320	157	4 125 4 250	197	12 850	237 238	41 250 42 500	277 278	128 500 132 000
39	132	79	425 437	118	1 3 2 0	150	4 250	198	13 600	230	42 500	278	132 000
	100	L '3	~~′				- 575		10 000				100 000

 Table 4 — Correlation between load index and tyre load-carrying capacity (TLCC)

Table 5 — Correlation between speed symbol and speed category

Speed symbol	Speed category km/h
В	50
С	60
D	65
E	70
F	80
G	90
J	100
к	110
L	120
м	130
N	140
Р	150
Q	160
R	170
S	180
Т	190

km/h			Load	d, %, for speed syr	nbol		
)Tyres with	load index (sing	gle) ≤ 121, spee	d symbols J and	above			
	J	К	L	М	N	Р	$\geq Q^{2}$
Static			210				
10			175				
15			160				
30			135				
50	3)	3)	120	See column	See column	See column	See colum
70			112,5	L	L	L	L
85			108,5				
100			105				
120			100				
130			95	100	100		100
140	_		90	95		100	
150	•	Teh ST	ANDAR	D PRE			
160		I CH SI	ANDAN				
	htt	ps://standards.itel	nai/catalog/standa	rds/sist/38b8204	5-4296-4683-	L	171
	F	ne://standards.itel	<u>ISO 4209-1</u>	<u>:1993</u> К		L	M
Chatle	250	1 000	21 022 707 ("	4000 1 1002			
Static	250	b909	-31e923a787e6/i	so-4209-1-1993			
10	180	b909	-31e923a787e6/i		oolump F		
10 15	180 165	ь909	-31e923a787e6/i		column F		
10 15 30	180 165 125	ь909	-31e923a787e6/i		column F		
10 15 30 50	180 165 125 112				column F		
10 15 30 50 65	180 165 125 112 107,5	108,5	108,5				
10 15 30 50 65 80	180 165 125 112 107,5 100	108,5	108,5 104			e column J	
10 15 30 50 65 80 90	180 165 125 112 107,5 100 94	108,5 104 100	108,5 104 102			e column J	
10 15 30 50 65 80 90 100	180 165 125 112 107,5 100 94 85	108,5 104 100 95	108,5 104 102 100	See (See		100
10 15 30 50 65 80 90 100 110	180 165 125 112 107,5 100 94 85 —	108,5 104 100 95 87	108,5 104 102 100 96	See (Sec 0	100	100
10 15 30 50 65 80 90 100 110 120	180 165 125 112 107,5 100 94 85	108,5 104 100 95	108,5 104 102 100	See (Sec 0		100
10 15 30 50 65 80 90 100 110	180 165 125 112 107,5 100 94 85 —	108,5 104 100 95 87	108,5 104 102 100 96	See (Sec 0	100	

Table 6 — Load-carrying capacity at various speeds

2) Speed symbols Q and above represent tyre maximum speed capability.

3) For speed symbols J and K, the load variations in table 6 b) apply.

below, "speed" means the operating speed of the vehicle.