

INTERNATIONAL STANDARD

ISO
4209-1

Fifth edition
1993-11-01

Truck and bus tyres and rims (metric series) —

Part 1:

Tyres

iTeh Standards
Pneumatiques et jantes (séries millimétriques) pour camions et autobus —
(Partie 1: Pneumatiques)
Document Preview

[ISO 4209-1:1993](#)

<https://standards.iteh.ai/catalog/standards/iso/38b82045-4296-4683-b909-31e923a787e6/iso-4209-1-1993>

Reference number
ISO 4209-1:1993 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 4209-1 was prepared by Technical Committee ISO/TC 31, *Tyres, rims and valves*, Sub-Committee SC 4, *Trucks and bus tyres and rims*.

This fifth edition cancels and replaces the fourth edition (ISO 4209-1:1988), of which it constitutes a technical revision.

ISO 4209 consists of the following parts, under the general title *Truck and bus tyres and rims (metric series)*:

- *Part 1: Tyres*
- *Part 2: Rims*

Annexes A, B and C of this part of ISO 4209 are given for information only.

© ISO 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization
Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Truck and bus tyres and rims (metric series) —

Part 1: Tyres

1 Scope

This part of ISO 4209 specifies the designation, dimensions and load ratings of the metric series of tyres primarily intended for trucks and buses.

It applies to bias-belted, diagonal and radial tyres for trucks and buses, mounted on 5° tapered rims and on 15° tapered (drop-centre) rims.

It is also applicable to different concepts and types of tyres and rims; in these cases, however, appropriate rim/section ratios K_1 , coefficients K_2 , K_3 , C_R and construction codes have been added to tables 2 and 3.

ISO 4209-2 deals with requirements for rims.

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this part of ISO 4209. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this part of ISO 4209 are encouraged to investigate the possibility of applying the most recent edition of the standard indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 4223-1:1989, *Definitions of some terms used in the tyre industry — Part 1: Pneumatic tyres*.

3 Definitions

For the purposes of this part of ISO 4209, the definitions in ISO 4223-1 apply.

4 Tyre designation

The designation of the tyre shall be shown on its sidewall and shall include the following markings, to be shown close to each other:

- size and construction (see 4.1);
- service condition characteristics (see 4.2).

4.1 Size and construction

The size and construction characteristics shall be indicated as follows:

Nominal section width	Nominal aspect ratio	Tyre construction code	Nominal rim diameter code
-----------------------------	----------------------------	------------------------------	---------------------------------

or

Nominal section width	Nominal aspect ratio	Tyre construction code	Nominal rim diameter
-----------------------------	----------------------------	------------------------------	----------------------------

(See 4.1.4.)

4.1.1 Nominal section width

The nominal section width shall be expressed in millimetres. For tyres fitted to 5° taper rims and 15° taper rims (code-designated), the nominal tyre section width shall end in 5.

4.1.2 Nominal aspect ratio

The nominal aspect ratio shall be expressed as a percentage and shall be a multiple of 5.

4.1.3 Tyre construction code

The tyre construction code shall be as follows:

B for bias-belted construction;

For those tyres using a nominal rim diameter code, see table 1 for the value of D_r to be used.

5.1.6 Values

The relevant dimensions for the metric series of truck and bus tyre measuring rim width, design section width and design section height are shown in annexes A and B; for tyres of a given series, with a nominal tyre section over 205, it is recommended that they be in increments larger than 10.

5.2 Calculation of "maximum overall tyre dimensions in service"

These calculations are for use by vehicle manufacturers in designing for tyre clearances.

5.2.1 Maximum overall width in service, W_{\max}

The maximum overall width in service, W_{\max} , is equal to the product of the design tyre section width, S , and the appropriate coefficient, a (see table 2):

$$W_{\max} = S a$$

It includes protective ribs, lettering, embellishments, manufacturing tolerances and growth due to service.

5.2.2 Maximum overall diameter in service, $D_{0,\max}$

The maximum overall diameter in service, $D_{0,\max}$, is equal to the nominal rim diameter, D_r , plus twice the product of the design tyre section height, H , and the appropriate coefficient, b (see table 2):

$$D_{0,\max} = D_r + 2 H b$$

It includes manufacturing tolerances, the different types of tread patterns and growth due to service.

5.3 Minimum dual spacing, (MDS)

5.3.1 The minimum dual spacing is a guideline value equal to the product of the design tyre section width, S , and the appropriate coefficient, K_3 [see table 2 b):

$$MDS = S K_3$$

It is referred to a tyre load according to the load index, in dual application shown in the service characteristics on the tyre at an inflation pressure applicable for normal highway service.

5.3.2 The design tyre section width, S , will change 2,5 mm for each 0,25 change in rim width code. The minimum dual spacing shall be adjusted accordingly.

Table 1 — Nominal rim diameter code and rim width code

a) Nominal rim diameter code			
Code	5° tapered rims	15° tapered (drop-centre) rims	Nominal rim diameter, D_r mm
—	—	—	254
10	—	—	305
12	—	—	330
13	—	—	356
14	—	—	368
—	14.5	—	381
15	—	—	406
16	—	—	432
17	—	—	445
—	17.5	—	457
18	—	—	495
—	19.5	—	508
20	—	—	521
—	20.5	—	559
22	—	—	572
—	22.5	—	610
24	—	—	622
—	24.5	—	

b) Rim width code		
Code	5° tapered rims	Rim width mm
3.50	—	88,9
4.00	—	101,6
4.50	—	114,3
5.00	—	127
—	5.25	133,5
5.50	—	139,7
6.00	6.00	152,5
6.50	—	165,1
—	6.75	171,5
7.00	—	177,8
7.50	7.50	190,5
8.00	—	203,2
—	8.25	209,5
8.50	—	215,9
9.00	9.00	228,5
9.50	—	241,3
—	9.75	247,5
10.00	—	254
10.50	10.50	266,5
11.25	—	285,8
—	11.75	298,5
—	12.25	311
13.00	13.00	330
14.00	14.00	355,5
15.00	15.00	381
—	16.00	406,5
—	18.00	457

Table 2 — Coefficients for calculation of tyre dimensions

a) Coefficients K_2, b, a					
Structure	Tyre construction code	Coefficients			a
		K_2	b ¹⁾		
Bias-belted	B	0,4	1,07		1,08
Diagonal	D	0,4	1,07		1,08
Radial	R	0,4	1,04		1,05
b) Coefficients K_1, K_3					
Tyre construction code	Type of rim	Nominal aspect ratio H/S	Rim/section ratio K_1	Minimum dual spacing K_3	
B, D, R	5° tapered	100 to 65 ²⁾	0,70	1,15	
	15° tapered (drop-centre)	90 to 65 ²⁾	0,75	1,125	

NOTE — Other factors may be established for new concepts (constructions) of tyres.

1) For special tread tyres (see 4.3.3):
 Bias-belted: $b = 1,09$
 diagonal: $b = 1,09$
 radial: $b = 1,06$

2) For H/S lower than 65, further annexes will be established.

Document Preview

5.4 Permitted rim widths

The range of permitted rim widths, in millimetres, is determined, for each nominal section width, by multiplying the nominal section width, S_N , by the coefficients, C_R , presented in table 3, i.e. 4683-b909-31e923a787e6/iso-4209-1-1993

minimum rim width: $C_{R, \text{min}} \times S_N$

maximum rim width: $C_{R, \text{max}} \times S_N$

Table 3 — Coefficients for calculation of rim widths for truck and bus tyres related to nominal aspect ratio H/S

Type of rim	Nominal aspect ratio H/S	Nominal section width S_N mm	Coefficients for calculation of recommended rim width ¹⁾	
			C_R min.	max.
5° tapered	100 ≤ H/S ≤ 65	All	0,65	0,80
15° tapered	90 ≤ H/S ≤ 75	≤ 215	0,65	0,80
		≥ 225	0,675	0,80
	70 ≤ H/S ≤ 65	All	0,675	0,85

1) Other coefficients may be specified in relation to special services by agreement among tyre, rim, wheel and motor vehicle manufacturers.