

Edition 4.0 2025-09

INTERNATIONAL STANDARD

Semiconductor devices - iTeh Standards
Part 6: Discrete devices - Thyristors
(https://standards.iteh.ai)

Document Preview

<u>1EC 60747-6:2025</u>

https://standards.iteh.ai/catalog/standards/iec/4d5c1851-cb8a-4c9b-8f2e-71a8dfd03ef2/iec-60747-6-2025

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@jec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC 60747-6:2025

https://standards.iteh.ai/catalog/standards/iec/4d5c1851-ch8a-4c9h-8f7e-71a8dfd03ef7/iec-60747-6-2026

CONTENTS

F	OREWO)RD	6
1	Scop	pe	8
2	Normative references		
3	Term	8	
	3.1	General	9
	3.2	Principal voltages	9
	3.3	Principal currents	11
	3.4	Gate voltages and currents	12
	3.5	Power and energy dissipation	13
	3.5.1	Instantaneous power in a whole period of cycle	14
	3.5.2	2 Average power dissipation	15
	3.5.3	B Energy dissipation	17
	3.6	On-state, recovery and other characteristics	
	3.6.1	-	
	3.6.2	,	
	3.6.3	5	
	3.6.4	3 3	
	3.6.5	3	
	3.7	Mechanical ratingser symbols	26
4	Lette		
	4.1	General	
	4.2	Additional general subscripts	
	4.3	List of letter symbolsential ratings and characteristics	26
5	Esse		
	5.1	General	29
	5.2	Ratings (limiting values)	29
	5.2.1	Ratings (limiting values)	029-202
	5.2.2		
		T_{vj})	29
	5.2.3	Principal voltages	29
	5.2.4	Principal currents	30
	5.2.5	Gate voltages, current and power	36
	5.2.6	Total power dissipation (P_{tot})	37
	5.2.7	7 Frequency ratings	37
	5.2.8	Mechanical ratings	37
	5.3	Characteristics	37
	5.3.1	General	37
	5.3.2	2 On-state voltages	38
	5.3.3	On-state characteristics (where appropriate)	38
	5.3.4	(11)	
	5.3.5	Latching current (I _L)	39
	5.3.6		
	5.3.7	•	
	5.3.8		
	5.3.9	()	
			

	5.3.10	Gate ingger current (IGT) and gate ingger voltage (V _{GT})	39
	5.3.11	Gate non-trigger voltage (V_{GD}) and gate non-trigger current (I_{GD})	40
	5.3.12	Sustaining gate current (I_{FGsus}) (for turn-off thyristors only)	40
	5.3.13	Peak turn-off gate current (I_{RGQM}) (for turn-off thyristors only)	41
	5.3.14	Peak tail current (I_{ZM}) (for turn-off thyristors only)	41
	5.3.15	Characteristic time intervals	
	5.3.16	Reverse conducting voltage ($V_{\rm RC}$) (for reverse conducting thyristor)	43
	5.3.17	Power and energy dissipation	
	5.3.18	Reverse recovery characteristics (where appropriate)	
	5.3.19	Thermal resistance	
6	5.3.20	Transient thermal impedance	
6		g methods	
		neralification of ratings (limiting values)	
	6.2.1	Non-repetitive peak reverse voltage (V_{RSM})	
	6.2.2	Non-repetitive peak off-state voltage (V_{DSM})	
	6.2.3	Non-repetitive surge on-state current (I_{TSM})	
	6.2.4	On-state current ratings of fast switching thyristor	
	6.2.5	Critical rate of rise of on-state current (di/dt_{cr})	
	6.2.6	Peak case non-rupture current (I _{RSMC})	
		asuring methods for electrical characteristics	
	6.3.1	On-state voltage (V_T)	70
	6.3.2		
	6.3.3	Repetitive peak reverse current (I_{RRM})	75
	6.3.4	Holding current (<i>I</i> _H)	77
	6.3.5	Off-state current ($I_{ m D}$)	78
	standårds.ite 6.3.6	Repetitive peak off-state current (I_{DRM}))/4/-6-202 79
	6.3.7	Gate trigger current (I_{GT}) and gate trigger voltage (V_{GT})	
	6.3.8	Gate non-trigger voltage ($V_{\rm GD}$) and gate non-trigger current ($I_{\rm GD}$)	
	6.3.9	Turn-on delay time (t_{gd} or t_{d}) and turn-on time (t_{gt})	
	6.3.10	Circuit commutated turn-off time (t_q)	
	6.3.11	Critical rate of rise of off-state voltage (dv/dt_{cr})	
	6.3.12	Critical rate of rise of commutating voltage $(dv_{(com)}/dt_{cr})$ of triac	
	6.3.13	` '	
	6.3.14	Recovered charge (Q_r) and reverse recovery time (t_{rr})	
		Circuit commutated turn-off time (t_q) of reverse conducting thyristor	
	6.3.15 6.3.16	Turn off behaviour of turn-off thyristors Total energy dissipation in a whole period of cycle (for fast switching	105
	0.0.10	thyristor)	108
	6.4 Mea	asuring methods for thermal properties	
	6.4.1	General	
	6.4.2	Measurement of the case temperature (T_c)	109
	6.4.3	Measuring methods for thermal resistance ($R_{\rm th}$) and transient thermal	
		impedance $(Z_{th}(t))$	109

6.4.4		Measurement for thermal resistance and transient thermal impedance (Method A)	110
6	6.4.5		
		(Method B)	113
6	6.4.6	Measurement for thermal resistance and transient thermal impedance	126
6	6.4.7	(Method C, for turn-off thyristors only)	
		irements for type tests, routine tests, endurance tests and marking	
7.1	-	Type tests	
7.2		Routine tests	
7.3		Endurance tests	
	7.3.1	General	
7	7.3.2		
7	7.3.3	Conditions for endurance tests	137
7	'.3.4	Acceptance-defining characteristics and acceptance criteria for endurance tests	137
7	'.3.5	Acceptance-defining characteristics and acceptance criteria for reliability tests	137
7.4	ļ	Measuring and test methods	
7.5	5	Marking	137
Biblio	grap	hy	138
Figure	e 1 –	Peak values of on-state currents tandards	11
		Partial power (dissipation) of reverse blocking triode thyristor in a whole	
		cycle	14
		Components of dynamic on-state energy dissipation of reverse blocking istor in forward state	17
Figure	e 4 –	Reverse recovery time of reverse blocking triode thyristor	19
_		Off-state recovery time of reverse conducting triode thyristor	
s://stan	dard	s lieh al/catalog/standards/icc/4d5c1851-cb8a-4c9b-8f2e-71a8dfd03ef2/iec-6 · Circuit commutated turn-off time	0747-6-2
		Gate controlled turn-on time	
•		Gate controlled turn-off time of turn-off thyristor	
_		Recovered charge	
_		 Peak sinusoidal currents and typical waveform at higher frequencies 	
•		 Peak trapezoidal currents and typical waveform at higher frequencies 	
		Application of gate voltages for thyristors	
Figure	e 13	 Forward gate voltage versus forward gate current 	40
		 Examples of current and voltage waveform during turn off of thyristor ous circuit conditions 	42
		$-$ Curves with total energy dissipation E_{p} as parameter and sinusoidal lse	44
Figure	e 16	– Curves with total energy dissipation E_{p} as parameter and trapezoidal	
	•	lse	44
		– Recovered charge $Q_{\rm r}$, peak reverse recovery current $I_{\rm rrm}$ and reverse ime $t_{\rm rr}$ (idealized characteristics)	46
Figure	e 18	Circuit diagram for verification of non-repetitive peak reverse voltage	47
•		Circuit diagram for verification of non-repetitive peak off-state voltage	
•		Circuit diagram for verification of non-repetitive surge on-state current	
i iguit	<i>.</i> 20	3	50

Figure 21 – Basic circuit diagram and test waveform for verification of sinusoidal onstate current with reverse voltage applied	53
Figure 22 – Extended circuit diagram for verification of sinusoidal on-state current with reverse voltage applied	54
Figure 23 – Basic circuit diagram and test waveform for verification of sinusoidal on- state current with reverse voltage suppressed	56
Figure 25 – Basic circuit diagram and test waveform for verification of trapezoidal onstate current with reverse voltage applied	61
Figure 26 – Basic circuit diagram and test waveform for verification of trapezoidal onstate current with reverse voltage suppressed	63
Figure 27 – Circuit diagram for verification of critical rate of rise of on-state current	66
Figure 28 – On-state current waveform for critical rate of rise of on-state current	67
Figure 29 – Circuit diagram for verification of peak case non-rupture current	69
Figure 30 – Waveform of reverse current through thyristor	69
Figure 31 – Circuit diagram for measurement of on-state voltage (DC method)	
Figure 32 – Circuit diagram for measurement of on-state voltage (oscilloscope method)	
Figure 33 – Graphic representation of on-state voltage versus current characteristic (oscilloscope method)	
Figure 34 – Circuit diagram for measurement of on-state voltage (pulse method)	73
Figure 35 – Circuit diagram for measurement of peak reverse current	74
Figure 36 – Circuit diagram for measurement of latching current	76
Figure 37 – Waveform of latching current	77
Figure 38 – Circuit diagram for measurement of holding current	
Figure 39 – Circuit diagram for measurement of off-state current (DC method)	
Figure 40 – Circuit diagram for measurement of peak off-state current	
Figure 41 – Circuit diagram for measurement of gate trigger current and voltage	81
Figure 42 – Circuit diagram for measurement of gate non-trigger voltage and current	82
Figure 43 – Circuit diagram for measurement of turn-on delay time and turn-on time	47 84
Figure 44 – On-state current waveform of thyristor	
Figure 45 – Turn-on waveform of thyristor	86
Figure 46 – Turn-off waveform of thyristor	87
Figure 47 – Basic circuit diagram for measurement of circuit commutated turn-off time	88
Figure 48 – Circuit diagram for measurement of critical rate of rise of off-state voltage	89
Figure 49 – Waveform of linear rate of rise of off-state voltage	89
Figure 50 – Waveform of exponential rate of rise of off-state voltage	
Figure 51 – Circuit diagram for measurement of critical rate of rise of commutating voltage of low current triac	92
Figure 52 – Waveform during commutation of low current triac	93
Figure 53 – Circuit diagram for measurement of critical rate of rise of commutating voltage of high current triac	94
Figure 54 – Waveform for measurement of critical rate of rise of commutating voltage of high current triac with high and low $\mathrm{d}i/\mathrm{d}t$	96
Figure 55 – Circuit diagram for measurement of recovered charge and reverse recovery time (half sinusoidal waveform method)	98
Figure 56 – Current waveform through thyristor for measurement of recovered charge and reverse recovery time (half sinusoidal waveform method)	99

Figure 57 – Circuit diagram for measurement of recovered charge and reverse recover time (rectangular waveform method)	101
Figure 58 – Current waveform through thyristor for measurement of recovered charge and reverse recover time (rectangular waveform method)	101
Figure 59 – Circuit diagram for measurement of circuit commutated turn-off time of reverse conducting thyristor	103
Figure 60 – Current and voltage waveforms of circuit commutated turn-off time of reverse conducting thyristor	104
Figure 61 – Circuit diagram for measurement of turn off behaviour of turn-off thyristors	106
Figure 63 – Basic circuit diagram for measurement of transient thermal impedance (Method A)	112
Figure 64 – Superposition of reference current pulse on different heating currents	114
Figure 65 – Waveforms for power dissipation and junction temperature (general case)	115
Figure 66 – Basic circuit diagram for measurement of thermal resistance (Method B)	121
Figure 67 – Waveforms for measurement of thermal resistance (Method B)	122
Figure 68 – Basic circuit diagram for measurement of transient thermal impedance (Method B)	124
Figure 69 – Waveform for measurement of transient thermal impedance (Method B)	125
Figure 70 – Basic circuit diagram for measurement of thermal resistance (Method C)	127
Figure 71 – Waveform for measurement of thermal resistance (Method C)	128
Figure 72 – Waveform for measurement of transient thermal impedance (Method C)	129
Figure 73 – Calibration and measurement arrangement for heat flow method	131
(https://standards.iteh.ai)	
Table 1 – Additional general subscripts	
Table 2 – Principal voltages (anode-cathode voltages)	27
Table 3 – Principal currents (anode currents and cathode currents)	
Table 4 – Gate voltages and currents IFC 60747-6:2025	28
Table 5 – Characteristic time intervals	28 ⁻²⁰²
Table 6 – Power and energy dissipation	28
Table 7 – Other characteristics	29
Table 8 – Minimum type and routine tests for reverse blocking triode thyristor	135
Table 9 – Conditions for endurance tests	136
Table 10 – Acceptance-defining characteristics after endurance tests	137