

Edition 1.0 2025-11

INTERNATIONAL STANDARD

Semiconductor devices - Mechanical and climatic test methods -

Part 22-1: Bond strength - wire bond pull test methods

(https://standards.iteh.ai) Document Preview

IEC 60749-22-1:2025

https://standards.iteh.ai/catalog/standards/iec/cb27487c-f870-4733-9b32-8902f2081034/iec-60749-22-1-2026

ICS 31.080.01 ISBN 978-2-8327-0861-3

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

About the IEC

Switzerland

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published
details all new publications released. Available online and

once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Preview

IEC 60749-22-1:2025

https://standards.iteh.ai/catalog/standards/iec/cb27487c-f870-4733-9b32-8902f2081034/iec-60749-22-1-2025

CONTENTS

FC	REWO	PRD	5
1	Scop	pe	7
2	Norm	native references	7
3	Term	ns and definitions	8
4		aratus and material	
	4.1	Inspection equipment	
	4.2	Workholder	
	4.3	Wire bond pull equipment	
	4.4	Pulling hook	
	4.5	Bond pull clamp	
5	Proc	edure	
	5.1	Calibration	12
	5.2	Visual examination of bonds to be tested after decapsulation	
	5.2.1	·	
	5.2.2		
	5.2.3		
	5.3	Performing the wire bond pull test	
	5.3.1	Wire bond pull test used	13
	5.3.2		
	5.3.3	Clamp pull method of single bond (cut wire)	21
	5.4	Examination of pulled wire bonds	23
	5.5	Wire bond pull failure codes	24
	5.5.1	Tabulation of codes	24
	5.5.2	<u>11.C 00/7/-22-1.2025</u>	
	5.5.3	Breha Discussion on the significance of failure codes	0.321-
	5.6	Wire bond pull data	33
	5.6.1	Recording wire bond pull data	33
	5.6.2		
	5.6.3	•	
6	Sumi	mary	34
		(informative) Guidance for performing pull testing on stacked bonds security and others)	35
	A.1	Reverse bonds	35
	A.2	Security bonds	37
	A.3	Other stacked bonds	37
		(informative) Guidance for performing decapsulation on devices prior to bond	39
	B.1	Rationale	39
	B.2	Warning regarding ultrasonic cleaning of exposed wire bonds	39
	B.3	Concerns with decapsulation processes for devices with copper and silver wire bonds	39
	B.4	Concern with undercutting bonds due to over etching of the silver plating on leadframes	41
	B.5	Techniques for assessing if excessive etching of ag plating has occurred	43
	B.6	Concern with decapsulating packages with stitch bonds on multiple planes	44

B.7	Concern with not removing all encapsulation material around the bonded wire prior to pull testing	45
	(informative) Correlation between pull failure codes in this document versus e codes in Mil-Std 883, Method 2011.9	
	(informative) Images to aid in determining appropriate failure codes	
	Illustration of failure codes	
D.1		
D.2 D.3	Failure in deformed portion of wire above thermosonic stitch bond – Code 6 Failure in thermosonic stitch bond – Code 7	
D.3 D.4	Additional guidance for breaks in thermosonic stitch bonds – Code 6 versus	50
D. 4	code 7	51
	informative) Additional guidance regarding minimum pull force specification d process control requirements	55
Annex F (informative) Factors that can affect wire pull outcome	56
F.1	Important factors	56
F.2	How bond angle affects pull force	
F.3	Pull angle affects pull force and fail mode	
_	(informative) Background and reasons for choice of minimum pull	
	ion values	60
Bibliograp	phy	61
_	- Definition of midspan	
Figure 2 -	- Depiction of eight outliers, seven of which are outlier products	10
Figure 3 -	- Place hook under wire	14
Figure 4 -	- Orientation of hook with respect to the wire (viewed from above)	14
Figure 5 -	- Hook placement for wire pull test (WPT) for different types of wire bonds	16
Figure 6 -	- Wires with low bond angles	17
Figure 7 -	- Device with slots to allow for hook placement	17
Figure 8 -	Reverse "shingle" stack27487c-1870-4733-9632-890212081034/1eu-60749-2	18
Figure 9 -	- Vertical stack of die of the same size	 18
_	Hook placement for ball pull test (BPT) for different types of wire bonds	
	 Hook placement for stitch pull test (SPT) for different types of wire bonds 	
•	· · · · · · · · · · · · · · · · · · ·	
_	- Examples of acceptable and unacceptable placement of clamp on wire	
	- Clamp placement for ball pull test	
•	- Clamp placement for stitch pull test	
•	- General description of wire bond pull failure codes for all bond types	
Figure 16	- Detailed pull failure codes for standard thermosonically bonded wires	25
Figure 17	- Detailed pull failure codes for reverse thermosonically bonded wires	26
Figure 18	- Detailed pull failure codes for die to die thermosonically bonded wires	27
Figure 19	- Detailed pull failure codes for standard ultrasonically bonded wires	28
Figure 20	- Detailed pull failure codes for die to die ultrasonically bonded wires	29
Figure 21	Detailed pull failure codes for substrate to substrate ultrasonically bonded	
	Detailed pull failure codes for multi-loop ultrasonically bonded wires /	31
Figure 23	 Location of breaks in the stitch neckdown region versus in the stitch bond 	32

Figure A.3 – Examples of different electrical connections made with reverse bonds	30
	36
Figure A.4 – The bump of a security bond	37
Figure A.5 – The ball bond of a security loop	37
Figure A.6 – Example of another type of stacked bonds	38
Figure B.1 – Images of copper ball bonds showing severe damage from etching process	39
Figure B.2 – Comparison images showing degree of cu attack due to two different etchants	
Figure B.3 – Copper wire stitch bond fully decapsulated using laser ablation	41
Figure B.4 – Laser ablation damage	41
Figure B.5 – Drawn, optical and SEM images of break where metallurgical bond begin	ns 42
Figure B.6 – Undercutting of stitch bond due to excessive etching of silver plating	42
Figure B.7 – Ag plating removed by the decapsulation process, underlying cu is visib	
Figure B.8 – Plated Ag visible in the area around the stitch bonds, cu only visible at edges	43
Figure B.9 – Assessing if excessive etching of Ag plating has occurred	44
Figure B.10 – SEM and optical image examples of a reasonable amount of remaining encapsulant material for pull testing of very low angle bonds	
Figure C.1 – Pull failure code locations for this document and Mil-Std 883, Method 2011.9	46
Figure C.2 – Failure code diagram from Mil-Std 883, Method 2011.9	47
Figure D.1 – Gold stitch bond (unencapsulated) before and after wire pull testing	49
Figure D.2 – Examples of break occurring within the neckdown region	49
Figure D.3 – Copper stich bonds before and after wire pull testing	50
Figure D.4 – SEM image of a break within the neckdown region of a gold stitch bond.	50
Figure D.5 – Break occurring within gold stitch bonds	60749.50
Figure D.6 - Break occurring within neckdown region of copper stich bonds	
Figure D.7 – SEM images of where the breaks are designated code 7	51
Figure D.8 – Gold stitch bond on a Ni/Au plated cu land on an organic substrate	52
Figure D.9 – Images from construction analysis report of gold stitch bond	52
Figure D.10 – Stitch bonds made with Pd coated Cu wire on a Ag plated Cu alloy	
leadframe	
Figure D.11 – Ag splash	
Figure D.12 – Gaps between Cu wire and NiPdAu plated leadframe	53
Figure D.13 – Stitch bond made with Cu wire on a Ag plated Cu alloy leadframe	54
Figure D.14 – Images from construction analysis report of stitch bond made with Cu wire on a Ag plated Cu alloy leadframe	54
Figure F.1 – Force diagram and detailed force equations 5.3.4 and 5.3.5 from NBS Technical note 726	56
	57
Figure F.2 – Pull force versus tension in wire, an example of very low bond angles	50
Figure F.2 – Pull force versus tension in wire, an example of very low bond angles Figure F.3 – Various bond angles with respect to their bonding surfaces	

Table C.1 – Conversion from (new) this document pull codes to (old) Mil-Std 883, Method 2011.9	46
Table D.1 – Failure code illustrations	
Table F.1 – Compensation for minimum pull force for various bond angles	
Table F.2 – How pull angle φ affects force applied to each bond	. 59

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC 60749-22-1:2025

https://standards.iteh.ai/catalog/standards/iec/cb27487c-f870-4733-9b32-8902f2081034/iec-60749-22-1-2025

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Semiconductor devices - Mechanical and climatic test methods - Part 22-1: Bond strength - Wire bond pull test methods

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC https://sta/Publications.ai/catalog/standards/iec/cb27487c-f870-4733-9b32-8902 2081034/iec-60749-22
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60749-22-1 has been prepared by IEC technical committee 47: Semiconductor devices. It is an International Standard.

This International Standard is to be used in conjunction with IEC 60749-22-2:2025.

This first edition, together with the first edition of IEC 60749-22-2:2025, cancels and replaces the first edition of IEC 60749-22 published in 2002. It is based on JEDEC document JESD22-B120. It is used with permission of the copyright holder, JEDEC Solid State Technology Association.

This edition includes the following significant technical changes with respect to the previous edition:

a) Major update, including new techniques and use of new materials (e.g. copper wire) involving a complete rewrite as two separate subparts (this document and IEC 60749-22-2).