

Edition 5.0 2025-12

INTERNATIONAL STANDARD

Semiconductor devices - Mechanical and climatic test methods - Part 26: Electrostatic discharge (ESD) sensitivity testing - Human body model (HBM)

Document Preview

IEC 60749-26:2025

https://standards.iteh.ai/catalog/standards/iec/bcbe5a2c-9adc-4eb5-9d36-9c970fcf73a5/iec-60749-26-2025

E ICS 31.080.01 ISBN 978-2-8327-0918-4

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublishedStay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Preview

IEC 60749-26:2025

https://standards.iteh.ai/catalog/standards/iec/bche5a2c-9adc-4eh5-9d36-9c970fcf73a5/iec-60749-26-2025

IEC 60749-26:2025 © IEC 2025

CONTENTS

F	OREWO	RD	4
1	Scop	e	6
2	Norm	native references	6
3		is and definitions	
4		ratus and required equipment	
•	4.1	Waveform verification equipment	
	4.2	Oscilloscope	
	4.3	Additional requirements for digital oscilloscopes	
	4.4	Current probe	
	4.5	Evaluation loads	
	4.6	Attenuator	
	4.7	Human body model simulator	
	4.8	HBM test equipment parasitic properties	
5	Stres	ss test equipment qualification and routine verification	
	5.1	Overview of required HBM tester evaluations	
	5.2	Measurement procedures	
	5.2.1	•	
	5.2.2	• •	
	5.2.3		
	5.2.4	TIEN STANDARDS	
	5.3	HBM tester qualification ///	17
	5.3.1		17
	5.3.2		17
	5.4	Test fixture board qualification for socketed testers	18
	5.5	Routine waveform check requirements	
	5.5.1		
	tan5.5.2	Standard routine waveform check description	ec-60749- 16 -20
	5.5.3		
	5.6	High voltage discharge path check	20
	5.6.1	Relay testers	20
	5.6.2	Non-relay testers	20
	5.7	Tester waveform records	20
	5.7.1	Tester and test fixture board qualification records	20
	5.7.2	Periodic waveform check records	20
	5.8	Safety	21
	5.8.1	Initial set-up	21
	5.8.2	Training	21
	5.8.3	Personnel safety	21
6	Class	sification procedure	21
	6.1	Devices for classification	21
	6.2	Parametric and functional testing	21
	6.3	Device stressing	21
	6.3.1	Device stressing methods	21
	6.3.2	No connect pins	22
	6.4	Pin combination stressing	22
	6.4.1	Pin combination stressing options	22

IEC 60749-26:2025 © IEC 2025

6.4.2	No connect pins	23
6.4.3	Supply pins	23
6.4.4	Non-supply pins	24
6.5	Pin groupings	24
6.5.1	Supply pin groups	24
6.5.2	Partitioning supply pin groups	24
6.5.3	Supply pins connected by package plane	25
6.5.4	Supply pins connected by an above-passivation layer	25
6.5.5	Shorted non-supply pin groups	25
6.6	Pin stress combinations	
6.6.1	Pin stress combination categorization	25
6.6.2	Non-supply and supply to supply combinations (1, 2, N)	27
6.6.3	11 7	
6.7	Pin-pair stressing	28
6.8	Low-parasitic HBM simulator allowance	
6.9	Testing after stressing	29
	re criteria	
8 Com	ponent classification	29
Annex A ((informative) Cloned non-supply (I/O) pin sampling test method	30
A.1	Purpose and overview	30
A.2	Pin sampling overview and statistical details	30
A.3	IC product selections	31
A.4	Randomly selecting and testing cloned I/O pins	32
A.5	Determining if sampling can be used with the Excel spreadsheet	32
A.5.1	Using the Excel spreadsheet	32
A.5.2	Using the Excel spreadsheet	32
A.6	HBM testing with a sample of cloned I/O pins	33
A.7	Examples of testing with sampled cloned I/Os.	
://standa7d	s.iteh Exampleg/standards/iec/bcbe5a2c-9adc-4eb5-9d36-9c970fcf73a5/iec-6074	49-33-202
A.7.2	Example 2	34
	(informative) Determination of withstand thresholds for pin or pin-combination	36
B.1	Overview	36
B.2	Testing procedures	
B.3	Restrictions	
B.4	Example of using subset withstand threshold data	37
Annex C	(informative) HBM test equipment parasitic properties	
C.1	Optional trailing pulse detection equipment or apparatus	38
C.2	Optional pre-pulse voltage rise detection test equipment	
C.3	Optional pre-HBM current spike detection equipment	
C.4	Open-relay tester capacitance parasitics	43
C.5	Test to Determine if an HBM Simulator is an <i>N</i> -channel Low-Parasitic Simulator	
Annex D	(informative) HBM test method flow chart	
	(informative) Failure window detection testing methods	
E.1	Methodology	
E.1	Combined withstand threshold method and window search	
E.2 E.3	Failure window detection with a known withstand threshold	
∟.∪	- Langio William Actorioli Witi a Nilowii Witibtalia III G31014	🛨 🔾

IEC 60749-26:2025 © IEC 2025

Bibliography50
Figure 1 – Simplified HBM simulator circuit with loads
Figure 2 – Current waveform through shorting wires15
Figure 3 – Current waveform through a 500 Ω resistor
Figure 4 – Peak current short circuit ringing waveform17
Figure A.1 – SPL, V_1 , and V_M with the Bell shape distribution pin failure curve31
Figure A.2 – I/O sampling test method flow chart
Figure C.1 – Diagram of trailing pulse measurement setup
Figure C.2 – Positive stress at 4 000 V
Figure C.3 – Negative stress at 4 000 V
Figure C.4 – Illustration of measuring voltage before HBM pulse with a Zener diode or a device40
Figure C.5 – Example of voltage rise before the HBM current pulse across a 9,4 V Zener diode41
Figure C.6 – Optional pre-current pulse detection equipment or apparatus42
Figure C.7 – Positive stress at 1 000 V42
Figure C.8 – Diagram of a 10-pin shorting test device showing current probe44
Figure D.1 – HBM test method flow chart
Table 1 – Waveform specification
Table 2 – Preferred pin combinations sets
Table 3 – Alternative pin combinations sets
Table 4 – HBM ESD component classification levels
Table B.1 – Inclusion of lower ESD level high-speed pin data ESD information for handling of ESDS in an ESD protected area (required)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Semiconductor devices Mechanical and climatic test methods Part 26: Electrostatic discharge (ESD) sensitivity testing Human body model (HBM)

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60749-26 has been prepared by IEC technical committee 47: Semiconductor devices in collaboration with technical committee 101: Electrostatics. It is an International Standard.

This fifth edition cancels and replaces the fourth edition published in 2018. This edition constitutes a technical revision. This standard is based upon ANSI/ESDA/JEDEC JS-001-2023. It is used with permission of the copyright holders, ESD Association and JEDEC Solid state Technology Association.

This edition includes the following significant technical changes with respect to the previous edition:

- a) new definitions have been added;
- b) text has been added to clarify the designation of and allowances resulting from "low parasitics". The new designation includes the maximum number of pins of a device that can pass the test procedure.

The text of this International Standard is based on the following documents:

Draft	Report on voting
47/2963/FDIS	47/2984/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 60749 series, published under the general title Semiconductor devices - Mechanical and climatic test methods, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or

IEC 60749-26:2025

https://starevised.iteh.ai/catalog/standards/iec/bcbe5a2c-9adc-4eb5-9d36-9c970fcf73a5/iec-60749-26-2025