

Edition 2.0 2025-07

INTERNATIONAL STANDARD

AMENDMENT 1

Communication networks and systems for power utility automation - Part 10: Conformance testing

(https://standards.iteh.ai)
Document Preview

IEC 61850-10:2012/AMD1:2025

https://standards.iteh.ai/catalog/standards/jec/b5f30380-2c63-46dd-a059-39733c3cf297/jec-61850-10-2012-amd1-202

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IÉC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or

need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Warning! Make sure that you obtained this publication from an authorized distributor.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Communication networks and systems for power utility automation -Part 10: Conformance testing

AMENDMENT 1

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch [and/or] www.iso.org/patents. IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 1 to IEC 61850-10 has been prepared by IEC technical committee 57: Power systems management and associated information exchange.

The major changes in this amendment are as follows:

- server device conformance test procedures have been updated; new test cases are: sAss4, sAss5, sAssN7, sSrv14, sSrv15, sDs15, sSg11..sSg14, sRp15, sRp16, sRp17, sRp23, sRpN9, sBr29, sBrN9, sBrN10, sGop12, sGos8..15, sGos20..23, sGosN7, sSBOns8, sTm6, sTm7, sTmP1, sTmP2, sTmP5, sTmPN1;
- client device conformance test procedures have been updated; new test cases are: cAss10, cAssN8, cAssN9, cSrv10, cSrvN7..cSrvN9, cSg46, cRp14..22, cRp40..46, cBr14..22, cBr30..32, cBr46, cLog9, cLog46, cLogN4, cGcb46, cSBOns10, cFt16, cMsvcb1, cMsvcb2, cMsvcb46;

- sampled values test procedures have been merged into server;
- server IED configuration tool related conformance test procedures have been updated; the ICD export and SCD import test cases have been merged into server, new test cases are: tTf4, tTf5;
- System Configuration Tool related conformance test procedures have been updated; new test cases are: tSieN2, tSce8..10, tSceN2, tDfeN3, tSmo7..9, tSse4..7, tSsi5..6, tSeh7..11;
- GOOSE performance test procedures have been updated; the performance classes have been updated to align with the performance class definition updates.

The text of this Amendment is based on the following documents:

Draft	Report on voting
57/2769/FDIS	57/2797/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Amendment is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications/.

A list of all parts of IEC 61850 series, under the general title Communication networks and systems for power utility automation, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed, <u>IEC 61850-10:2012/AMD1:2025</u>
- https://standards.iifhdrai/catalog/standards/iec/b5f30380-2c63-46dd-a059-39733c3cf297/iec-61850-10-2012-amd1-2025
 - revised.

1 Scope

Add the following new text after the first paragraph of the Scope (before the NOTE):

Cyber security extensions provided by IEC 62351 are conformance tested against the IEC 62351-100-4 and IEC 62351-100-6.

2 Normative references

Insert the following new normative references:

IEC/IEEE 61850-9-3:2016, Communication networks and systems for power utility automation – Part 9-3: Precision time protocol profile for power utility

2

IEC 61869-9:2016, Instrument transformers – Part 9: Digital interface for instrument transformers

Remove the following existing normative reference:

IEC 62439-3:2012, Industrial communication networks – High availability automation networks – Part 3: Parallel Redundancy Protocol (PRP) and High Availability Seamless Redundancy (HSR)

4 Abbreviated terms

Insert the following new abbreviated term:

PTP Precision Time Protocol

6 Device related conformance testing

Replace the existing text, figures (Figures 2 to 6) and tables (Tables 1 to 71) of Clause 6 with the following new text, figures and tables:

6.1 Test methodology

Communication testing needs at least two devices to communicate with each other. Comprehensive interoperability testing of all possible products is not feasible. Therefore, the test concept shall include test devices, test configurations, and test scenarios. The dynamic behaviour should be tested properly by using well-defined test cases.

Messages are generated to test the communication capabilities. Hardwired stimuli (contacts, voltages, currents, etc.) and stimuli coming over a serial link if applicable should be used if applicable.

Special attention shall be given to communication equipment such as star-couplers, switches, etc. which shall support all requested features of the standard but not introduce additional contingencies and limitations. The impact of the communication method (client-server, GOOSE, SV, etc.) used by the DUT shall be considered properly in the test procedures. Verification of functional applications (use of GOOSE messages) is not part of a conformance test even if advanced tools may offer such analysis.

6.2 Conformance test procedures

6.2.1 General

This subclause describes the test procedure requirements, test structure, the abstract test cases (what is to be tested). The format and a few examples of detailed test procedures (how to perform the test) are given in Annex A.

6.2.2 Test procedure requirements

The test procedure requirements are:

- The abstract test cases describe what shall be tested, the detailed test procedures describe how a test engineer, or a test system shall perform the test.
- Test cases include a reference to the applicable paragraph(s) in the referenced document(s).
- The test results shall be reproducible in the same test lab and in other test labs.
- Support automated testing with minimal human intervention, as far as reasonably possible.

- The tests shall focus on situations that cannot easily be tested during, for example, a factory
 or site acceptance test, and prevent inter-operability risks, for example:
 - check behaviour of the device on delayed, lost, double and out of order packets,
 - · configuration, implementation, operation risks,
 - mismatching names, parameters, settings, or data types,
 - · exceeding certain limits, ranges or timeouts,
 - · force situations to test negative responses,
 - check all (control) state machine paths, and
 - force simultaneous control operations from multiple clients.
- The ACSI tests focus on the application layer (mapping).
- The device under test (DUT) is considered as a black box. The I/O and the communication interface are used for testing.
- The test includes testing the versions, data model and configuration file, and the use of applicable ISO/IEC 9646 series terminology.

The test procedures shall be formatted as outlined in Figure 2. With this format, the test procedures document can also be used as test report. A few test procedure examples are depicted in Annex A.

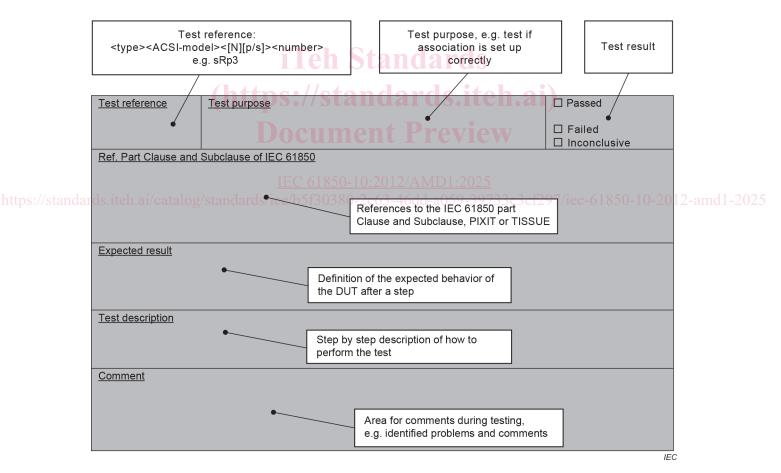


Figure 2 – Test procedure format

4

6.2.3 Test structure

The test cases are structured as follows:

- documentation and version control (IEC 61850-4);
- configuration file (IEC 61850-6);
- data model (IEC 61850-7-3 and IEC 61850-7-4);
- mapping of ACSI models and services (IEC 61850-7-2 and applicable SCSM).

6.2.4 Test cases to test a server device

6.2.4.1 General

This part of the IEC 61850 series specifies the test system architecture and abstract test cases for server devices. The abstract test cases shall be used for the definition of test procedures to run in tests.

NOTE The SCSM specific test procedures are provided by test facilities agreed upon by the market participants.

6.2.4.2 Test system architecture to test a server device

In order to be able to perform a server device test, a minimum test set-up is necessary. The test architecture contains (see Figure 3):

- DUT:
- client simulator to initiate and generate TPAA messages;
- GOOSE simulator to send correct and incorrect GOOSE messages;
- SV simulator to send correct and incorrect SV messages;
- test master to start/stop test cases, start/stop the analyzer and archive test results;
- time master;
- engineering tool to configure the DUT;
- protocol analyzer to store all the network traffic for each test case;
- https://standard.signal generator to force binary and analogue events, controlled by the test master or test and 1-2025 engineer.

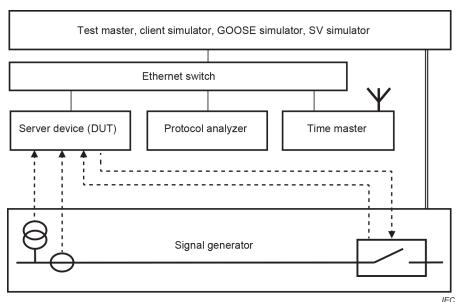


Figure 3 – Test system architecture to test a server device

5