

Edition 2.0 2025-05 COMMENTED VERSION

INTERNATIONAL STANDARD

Railway applications – Communication, signalling and processing systems – Safety related electronic systems for signalling

(https://standards.iteh.ai)
Document Preview

IEC 62425-2025

https://standards.iteh.ai/catalog/standards/iec/799f1414-1d7e-421c-9691-efa650dc6077/iec-62425-2025

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublishedStay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Preview

IEC 62425:2025

https://standards.iteh.ai/catalog/standards/iec/799f1414-1d7e-421c-9691-efa650dc6077/iec-62425-2025

CONTENTS

FC	DREWOR	RD	6
IN	TRODU	CTION	9
1	Scope	9	10
2	Norma	ative references	11
3	Terms	s, definitions and abbreviated terms	12
		Terms and definitions	
		Abbreviated terms	
4		ıll framework of this document	
5		rements for developing safety-related electronic systems	
Ū	•	General	
	-	The quality management process	
		The safety management process	
	5.3.1	General	
	5.3.2	Guideline for structuring documentation	
	5.3.3	Safety life cycle	
	5.3.4	Safety organization	
	5.3.5	Safety plan	
	5.3.6	Hazard log	
	5.3.7	Safety requirements specification	31
	5.3.8	System design for safety	31
	5.3.9	Safety operation and maintenance plan	32
	5.3.10		32
	5.3.11	Safety validation	33
	5.3.12	Safety qualification tests	34
	5.3.13	Management of safety-related application conditions	35
	5.3.14	Management of safety-related application conditions Safety justification	-62423 5 2025
	5.3.15		
6	Requi	rements for elements following different life cycles	37
	6.1	General	37
	6.2	Use of pre-existing items	38
	6.2.1	General	38
	6.2.2	Requirements for use of complete pre-existing systems	39
	6.2.3	Requirements for use of pre-existing equipment	39
	6.3	Safety-related tools for electronic systems	40
	6.4	Physical security and cybersecurity	41
7	The s	afety case: structure and content	42
	7.1	The safety case structure	42
	7.2	The technical safety report	44
	7.3	Generic and specific safety cases	53
	7.4	Provisions for the specific application safety case	53
	7.5	Dependencies between safety cases	54
8	Syste	m safety acceptance and subsequent phases	55
	8.1	System safety acceptance process	55
	8.2	Operation, maintenance and performance monitoring	59
	8.3	Modification and retrofit	59
	8.4	Decommissioning and disposal	59

Annex A (r	normative) Safety integrity levels	60
A.1	General	60
A.2	Safety requirements	60
A.3	Safety integrity	61
A.4	Determination of safety integrity requirements	61
A.4.1	General	61
A.4.2	Risk assessment	63
A.4.3	Hazard control	65
A.4.4	Identification and treatment of new hazards arising from design	71
A.5	Allocation of SILs	72
A.5.1	General aspects	
A.5.2	Relationship between SIL and associated TFFR	73
Annex B (r	normative) Management of faults for safety-related functions	75
B.1	General	75
B.2	General concepts	75
B.2.1	Detection and negation times	75
B.2.2	Composition of two independent items	76
B.3	Effects of faults	77
B.3.1	Effects of single faults	77
B.3.2	Independence of items	79
B.3.3	Detection of single faults	84
B.3.4	Action following detection (retention of safe state)	
B.3.5	Effects of multiple faults	88
B.3.6	Defence against systematic faults	91
Annex C (I	normative) Identification of hardware component failure modes	92
C.1	General	92
C.2	General procedureIEC 62425:2025	92
os://sci3dard	Procedure for integrated circuits 9f1414-1d7e-421c-9691-efa650dc6077/iec	<u>-6242</u> 92 ²⁰²⁵
C.4	Procedure for components with inherent physical properties	93
C.5	General provisions concerning component failure modes	93
Annex D (i	nformative) Example of THR/TFFR/FR apportionment and SIL allocation	111
	normative) Techniques and measures for the avoidance of systematic faults	
	General	
	Tables of techniques and measures	
	nformative) Guidance on User Programmable Integrated Circuits	
•	General	
F.1.1	Purpose	
F.1.2	Terminology and context	
	UPIC life cycle	
F.2.1	General	
F.2.2	Organization, roles, responsibilities and personnel competencies	
F.2.3	UPIC Requirements	
F.2.4	UPIC Architecture and Design	
F.2.5	Logic Component Design	
F.2.6	Logic Component Coding	
F.2.7	Logic Component Verification	
F.2.8	UPIC Physical Implementation	
		-

F.2.9	UPIC Integration	128
F.2.10	UPIC Validation	128
F.2.11	Requirements for use of pre-existing logic components	128
F.3 Deta	ailed technical requirements for UPIC	128
F.3.1	Guidance on safety architecture	
F.3.2	Protection against random faults – architectural principles	
F.3.3	Protection against systematic faults – techniques and measures	
-	mative) Changes in this document compared to IEC 62425:2007	
Bibliography		141
List of comme	nts	143
Figure 1 – Sco	pe of the main IEC and CENELEC railway application standards	11
Figure 2 – Stru	ucture of IEC 62425	24
Figure 3 – Exa	mple of system life cycle	26
Figure 4 – Exa	imple of design and validation portion of system life cycle	28
Figure 5 – Inde	ependence of roles for different SILs and BI, phases 5 to 10	30
	icture of safety case	
· ·	ucture of technical safety report	
_	imples of different usage of safety cases	
•	imples of different safety acceptance processes	
-	afety requirements and safety integrity	
	he hourglass model	
•	efinition of hazards with respect to the system boundary	
	xample of a hazard analysis process	
	ommon cause failures (CCF) 62425:2025	
_	reatment of CCF by FTAC/799f1414-1d7e-421c-9691-efa650dc6077/ied	
•	elationship between SILs and techniques	
	etection and negation times	
Figure B.2 – C	ontrol of single and multiple faults	79
Figure B.3 – Ir	fluences affecting the independence of items	81
Figure B.4 – D	etection and negation of single faults – composite fail-safety	87
Figure B.5 – D	etection and negation of single faults – reactive fail-safety	88
Figure C.1 – E	xample of a 4-terminal resistor, using a hybrid thick layer technique	95
Figure D.1 – E	xample of THR/TFFR/FR breakdown and related SIL allocation	111
Figure F.1 – U	PIC architecture	124
Figure F.2 – U	PIC development context	124
_	xample of UPIC development life cycle	
_	xample of UPIC development life cycle with pre-existing components	
_	PIC development techniques and measures	
94.01.0	. To do to opinion toomingade and medealed	
Table 1 – Eva	mple of SRAC template	36
	ions and contents of the technical safety report	
Table 2 - Sect		45 73

testing	
Table C.1 – Resistors	95
Table C.2 – Capacitors	
Table C.3 – Electromagnetic components	97
Table C.4 – Diodes	100
Table C.5 – Transistors	101
Table C.6 – Controlled rectifiers	103
Table C.7 – Surge suppressors	104
Table C.8 – Opto-electronic components	105
Table C.9 – Filters	107
Table C.10 – Interconnection assemblies	108
Table C.11 – Fuses	109
Table C.12 – Switches and push/pull buttons	109
Table C.13 – Lamps	109
Table C.14 – Batteries	110
Table C.15 – Transducers and sensors (excluding those with internal electronic circuitry)	
Table E.1 – Safety planning and quality assurance activities	11
Table E.2 – Safety requirements specification	116
Table E.3 – Safety organization	
Table E.4 – Architecture of system, subsystem or equipment	117
Table E.5 – Design features Preview	118
Table E.6 – Failure and hazard analysis methods	119
Table E.7 – Design and development of system, subsystem or equipment	120
Table E.9 – Application, operation and maintenance	122
Table F.1 – Example of documentation generated during each phase	126
Table F.2 – Simplified techniques and measures for protection against systematic failures	13(
Table F.3 – Design and verification (including all activities before synthesis)	
Table F.4 – Synthesis	
Table F.5 – Placement, routing and layout generation	
Table F.6 – Description of techniques for design	
Table F.7 – Description of techniques for synthesis	
Table F.8 – Description of techniques for placement, routing and layout generation	
Table G.1 – Clauses and subclauses – correspondence with IEC 62425:2007	
Table G.2 – Figures and tables – correspondence with IEC 62425:2007	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

RAILWAY APPLICATIONS – COMMUNICATION, SIGNALLING AND PROCESSING SYSTEMS – SAFETY RELATED ELECTRONIC SYSTEMS FOR SIGNALLING

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

This commented version (CMV) of the official standard IEC 62425:2025 edition 2.0 provides the user with comments from IEC TC 9 experts to explain the reasons of the most relevant changes made to the previous IEC 62425:2007 edition 1.0.

Experts' comments are identified by a blue-background number. Mouse over a number to display a pop-up note with the comment.

This publication contains the CMV and the official standard. The full list of comments is available at the end of the CMV.