

IEC 63378-6

Edition 1.0 2026-02

INTERNATIONAL STANDARD

Thermal standardization on semiconductor packages -
Part 6: Thermal resistance and capacitance model for transient temperature
prediction at junction and measurement points

Document Preview

[IEC 63378-6:2026](#)

<https://standards.iteh.ai/catalog/standards/iec/36f9fb44-b489-4706-ad6f-c518578c1d82/iec-63378-6-2026>

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2026 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat
3, rue de Varembé
CH-1211 Geneva 20
Switzerland

Tel.: +41 22 919 02 11
info@iec.ch
www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Document Preview

[IEC 63378-6:2026](http://iec-63378-6-2026)

<https://standards.iteh.ai/catalog/standards/iec/36f9fb44-b489-4706-ad6f-c518578c1d82/iec-63378-6-2026>

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	3
INTRODUCTION	5
1 Scope	6
2 Normative references	6
3 Terms and definitions	6
4 Definition of DXRC	6
4.1 General	6
4.2 Thermal resistance and capacitance (RC) topology of DXRC	7
4.2.1 Thermal RC topology of DXRC	7
4.2.2 Outline of DXRC	8
4.2.3 RC values on NJA-RC	8
4.2.4 RC values on MPA-RC	8
Annex A (informative) Accuracy verification of DXRC model for TO-252	10
A.1 General	10
A.2 CFD model	10
A.3 Calculation of thermal RC values	12
A.4 MPA-RC and DXRC model outline	13
A.5 Optimization of RC values in MPA-RC	13
A.6 Result	15
Annex B (informative) Accuracy verification of DXRC model for TO-263	16
B.1 General	16
B.2 CFD model	16
B.3 Calculation of thermal RC values	18
B.4 MPA-RC and DXRC model outline	19
B.5 Optimization of RC values in MPA-RC	19
B.6 Result	20
Annex C (informative) Accuracy verification of DXRC model for HSOP	21
C.1 General	21
C.2 CFD model	21
C.3 Calculation of thermal RC values	23
C.4 MPA-RC and DXRC model outline	24
C.5 Optimization of RC values in MPA-RC	24
C.6 Result	25
Annex D (informative) The effect of PCB layers	26
D.1 General	26
D.2 Verification method	26
D.3 Result	26
Bibliography	28
Figure 1 – Thermal RC topology of DXRC	7
Figure 2 – Outline of DXRC	8
Figure A.1 – CFD model for TO-252	10
Figure A.2 – Size of TO-252 package	11
Figure A.3 – Structure function	12

Figure A.4 – Result of verification	15
Figure B.1 – CFD model for TO-263	16
Figure B.2 – Size of TO-263 package	17
Figure B.3 – Structure function	18
Figure B.4 – Result of verification	20
Figure C.1 – CFD model for HSOP	21
Figure C.2 – Size of HSOP package	22
Figure C.3 – Structure function	23
Figure C.4 – Result of verification	25
Figure D.1 – Comparisons of temperature rise between the detailed model and the DXRC model	27
 Table A.1 – Material attributes	11
Table A.2 – Thermal resistances in NJA-RC	12
Table A.3 – Thermal capacitances in NJA-RC	13
Table A.4 – Input variables	14
Table A.5 – Optimized RC values	14
Table B.1 – Material attributes	17
Table B.2 – Thermal resistances in NJA-RC	18
Table B.3 – Thermal capacitances in NJA-RC	19
Table B.4 – Optimized RC values	20
Table C.1 – Material Attributes	22
Table C.2 – Thermal resistances in NJA-RC	23
Table C.3 – Thermal capacitances in NJA-RC	24
Table C.4 – Optimized RC values	25
Table D.1 – Combination of the coverages of copper layers	26

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**Thermal standardization on semiconductor packages -
Part 6: Thermal resistance and capacitance model for transient
temperature prediction at junction and measurement points**

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 63378-6 has been prepared by subcommittee 47D: Semiconductor devices packaging, of IEC Technical Committee 47: Semiconductor devices. It is an International Standard.

The text of this International Standard is based on the following documents:

Draft	Report on voting
47D/991/CDV	47D/998/RVC

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.