

Edition 1.0 2025-11

INTERNATIONAL STANDARD

Management of distributed energy storage systems based on electrically chargeable vehicle batteries -

Part 1: Use cases and architectures nd ards.iteh.ai)

Document Preview

IEC 63382-1-2025

https://standards.iteh.ai/catalog/standards/iec/85990had-4f73-4158-a3c5-c89f30995f64/iec-63382-1-2025

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

About the IEC

Switzerland

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

once a month by email.

Service Centre: sales@iec.ch.

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or

need further assistance, please contact the Customer

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

CONTENTS

		RD	
IN		CTION	
1	•	9	
2	Norm	ative references	11
3	Terms	s, definitions and abbreviated terms	11
	3.1	Terms and definitions	11
	3.2	Abbreviated terms	19
4	Electr	ic vehicle charging stations (EVCS) – actors and station configurations	20
	4.1	Actors and their interactions	20
	4.2	Electric vehicle charging station (EVCS) configurations	23
5	Funct	ional requirements	26
	5.1	Data communication	26
	5.1.1	General	26
	5.1.2	Information model principles	27
	5.1.3	Information model compatibility and mapping to other standards	27
	5.1.4	Communication transport protocol	
	5.1.5	Message transport	27
	5.1.6	Message payload encoding	28
	5.1.7	Physical layer	28
	5.2	Cybersecurity and privacy	28
	5.2.1	General Atmost Later and and an italian air	
	5.2.2	Cybersecurity and privacy perimeter of the IEC 63382 series	28
	5.2.3	Cybersecurity and privacy risks	28
	5.2.4	Cybersecurity principles and requirements	31
	5.2.5	Cybersecurity and privacy measures	32
	5.3	Grid support functions and flexibility services	32
	5.3.1	Grid support functions and flexibility services	3382 <u>-</u> 1-2
	5.3.2	Flexibility services	
6	Use o	ases	34
	6.1	Overview of use cases	34
	6.2	Flexibility energy transfer use cases	35
	6.2.1	Individual EVU recharge at home CS	35
	6.2.2	EVU recharge at a visited charging station	45
	6.2.3	EV fleet recharge at a private parking	56
	6.2.4	Fleet EV recharge at a public parking	61
	6.2.5	EV service station – EVSS	
	6.2.6	EV recharge and energy community – use case UC 1.6	
	6.2.7	Bidirectional inverter on board. use case UC 1.7	90
	6.3	Flexibility service use cases	98
	6.3.1	Flexibility service based on setpoint following – use case UC 2.1	98
	6.3.2	Flexibility service based on demand response – use case UC 2.2	
	6.3.3	Flexibility service based on droop control – use case UC 2.3	109
	6.3.4	Fast frequency response service – use case UC 2.4	114
	0.0.1		
	6.3.5	V2G for tertiary control with reserve market – use case UC 2.5	119

6.3.7	Distribution grid congestion management by EV charging and discharging – Use case UC 2.7	140
6.4	Management of FO interface	
6.4.1	Enrolment of CSO/CSP by flexibility operator – use case UC 3.1	
6.4.2	Credentials handling – use case UC 3.2	
6.4.3	Management of flexibility service contracts – use case UC 3.3	159
6.4.4	Proof of flexibility service – use case UC 3.4	163
6.4.5	Discover flexibility service contract holders – use case UC 3.5	
6.4.6	flexibility service Phone App – use case UC 3.6	172
,	informative) Energy flexibility service use cases and DER operational ons	177
Annex B (informative) Supplementary information from Japanese energy markets	186
B.1	UC 2.5: V2G for tertiary control with reserve market	186
B.2	UC 2.6: V2X with dynamic pricing linked to the wholesale market	188
	UC 2.7: Distribution grid congestion management by EV charging and	
	discharging	
-	informative) Energy flexibility services	
Bibliograp	hy	195
Figure 1 –	Primary actors and secondary actors of the EV infrastructure	20
Figure 2 –	Overall diagram with actors of the EV infrastructure without roaming	21
Figure 3 –	Overall diagram with actors of the EV infrastructure with roaming	21
_	EVCS with multiple EVSE and DC bus, DC charge (diagram 1)	
_	EVCS with multiple EVSE and AC bus, DC charge (diagram 2)	
Figure 6 –	EVCS with multiple EVSE and AC bus, AC charge without off board power (diagram 3)	
Figure 7 –	EVCS with single EVSE, AC charge without off board power converter 1)	
os: Astandards	EVCS with single EVSE, DC charge (diagram 5)	382 ₂₆ -2
	IEC 63382 use case structure	
_	– UC 1.2 structure	
•		
_	– UC 1.2 compromised communications	
_	– AC–DC power conversion generic diagram	
•	– Flexibility services by FO, basic principle of operation	
_	 Sequence diagram of UC 1.1 scenario 1 – CSBE is present 	
_	 Sequence diagram of UC 1.1 scenario 2 – CSBE is not present 	45
	– Sequence diagram of UC 1.2 scenario 1 – FS session is controlled by	52
-	– Sequence diagram of UC 1.2 scenario 2 – FS session is controlled	56
Figure 18	– Sequence diagram of UC 1.3 – EV fleet at private parking	61
Figure 19	– Sequence diagram of UC 1.4 – Fleet EV at public parking – Scenario 1 – lled by visited-CSO	
Figure 20	Sequence diagram of UC 1.4 – Fleet EV at public parking – Scenario 2 – of a flexibility service controlled by home-CSP	
	Block diagram of an EV service station power system showing connections	
	DERs and actors	71

Figure 22 – Sequence diagram of UC 1.5 – EV service station	77
Figure 23 – Block diagram of a prosumer power system showing connections between DERs and actors	79
Figure 24 – Sequence diagram of UC1.6 Scenario 1 – Operation of EC in on grid mode	86
Figure 25 – Sequence diagram of UC1.6 Scenario 2 – Operation of EC in off grid mode	90
Figure 26 – Block diagram of bidirectional inverter onboard	91
Figure 27 – Sequence diagram of UC 1.7 – Bidirectional inverter onboard	97
Figure 28 – Flow chart of use case UC 2.1	102
Figure 29 – Sequence diagram of UC 2.1 – flexibility service based on setpoint following	103
Figure 30 – Sequence diagram of UC 2.2 – flexibility service based on demand response	109
Figure 31 – Sequence diagram of UC 2.3 – flexibility service based on droop control	114
Figure 32 – Interaction of actors in UC 2.4	114
Figure 33 – Sequence diagram of UC 2.4 – Fast frequency response service	119
Figure 34 – Use case diagram	122
Figure 35 – Sequence diagram of UC 2.5 – V2G for tertiary control with reserve market	129
Figure 36 – Use case diagram	133
Figure 37 – Sequence diagram of UC 2.6 – V2X with dynamic pricing linked to wholesale market price	140
wholesale market price	143
Figure 39 – Sequence diagram of UC 2.7 – Distribution grid congestion management by EV charging and discharging	150
Figure 40 – Sequence diagram of UC 3.1 – Enrolment of CSO/CSP by flexibility operator	155
Figure 41 – Sequence diagram of UC 3.2 – credentials handling	159
Figure 42 – Sequence diagram of UC 3.3 – Management of flexibility service contracts	163
Figure 43 – Sequence diagram of UC 3.4 – Proof of flexibility service	168
Figure 44 – Sequence diagram of UC 3.5 – Discover flexibility service contract holders	
Figure 45 – Sequence diagram of UC 3.6 – flexibility service phone APP	176
Figure B.1 – Tertiary control execution	186
Figure B.2 – "V2G for tertiary control with reserve market" System Configuration	
Figure B.3 – Tertiary control result example	187
Figure B.4 – "V2G for tertiary control with reserve market" System Architecture model	188
Figure B.5 – System configuration of "V2X with dynamic pricing"	189
Figure B.6 – Shift of charging time by applying dynamic pricing	189
Figure B.7 – Induction of EV charging/discharging by electricity price	190
Figure B.8 – "V2H with dynamic pricing" system architecture model	190
Figure B.9 – System configuration of "distribution grid congestion management by EV charging and discharging"	191
Figure B.10 – Example of "distribution grid congestion management by EV charging"	191
Figure B.11 – "Distribution grid congestion management by EV charging and discharging" system architecture model	192
Table 1 – List of actors of use cases	22

Table 2 – EVCS Configurations	23
Table 3 – Application of SGAM within IEC the 63382 series	27
Table 4 – Information model mapping or compatibility	27
Table 5 – Business parameters	31
Table 6 – List of use cases and use case groups	35
Table 7 – Additional actors in the UC 2.5	122
Table 8 – Additional actors in the UC 2.6	134
Table 9 – Additional actors in the UC 2.7	143
Table A.1 – DER functions, roles and information exchanges. flexibility services that can be requested by FO to EVCS	178

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC 63382-1:2025

https://standards.iteh.ai/catalog/standards/iec/85990bad-4f73-4158-a3c5-c89f30995f64/iec-63382-1-2025

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Management of distributed energy storage systems based on electrically chargeable vehicle batteries - Part 1: Use cases and architectures

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 63382-1 has been prepared by IEC technical committee 69: Electrical power/energy transfer systems for electrically propelled road vehicles and industrial trucks. It is an International Standard.

The text of this International Standard is based on the following documents:

Draft	Report on voting
69/1073/FDIS	69/1093/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.