

Edition 1.0 2025-07

TECHNICAL SPECIFICATION

Wind energy generation systems - Standards
Part 9: Probabilistic design measures for wind turbines
(https://standards.iteh.ai)
Document Preview

<u> 1EC TS 61400-9:2025</u>

https://standards.iteh.ai/catalog/standards/iec/38ce9c96-a745-4120-ad76-901bb89c3961/iec-ts-61400-9-2025

EC TS 61400-9:2025-07(en)

ICS 27.180 ISBN 978-2-8327-0494-3

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublishedStay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Preview

<u>1EC TS 61400-9:2025</u>

https://standards.iteh.ai/catalog/standards/iec/38ce9c96-a745-4120-ad76-901bb89c3961/iec-ts-61400-9-202

CONTENTS

F	FOREWORD5				
1	Scop	oe	7		
2	Norn	native references	7		
3	Term	ns, definitions, symbols and abbreviated terms	7		
	3.1	Terms and definitions			
	3.2	Symbols and abbreviated terms			
	3.2.1	•			
	3.2.2	•			
4	Princ	cipal elements	13		
	4.1	General	13		
	4.2	Minimum reliability level and component classes			
	4.3	Limit states			
	4.4	Data validity			
5	Unce	ertainty representation and modelling			
	5.1	General			
	5.1.1				
	5.1.2				
	5.1.3	•			
	5.1.4	, , ,			
	5.1.5				
	5.2	External condition uncertainty modelling			
	5.2.1		19		
	5.2.2				
	5.2.3	Wind conditions	20		
	5.2.4				
	5.2.5	Electrical network conditions 61400-9:2025	22		
	a15.13rds	Load uncertainty modelling 38ce9c96-a745-4120-ad76-901bb89c3961/	iec-ts-614023-9-20		
	5.3.1				
	5.3.2	Aeroelastic model	23		
	5.3.3	B Extreme loads	24		
	5.3.4	Fatigue loads	25		
	5.4	Structural resistance uncertainty modelling	25		
	5.4.1	General	25		
	5.4.2	Geometrical properties	25		
	5.4.3	Material properties	25		
	5.4.4	Resistance models	26		
	5.4.5	Fatigue strength and damage accumulation	26		
6	Perf	ormance modelling	26		
	6.1	General	26		
	6.2	Structural performance of primary structures	26		
	6.2.1				
	6.2.2	Load performance calibration for ultimate limit states	27		
	6.2.3				
	6.3	Performance of primary mechanical and electrical components	30		
	6.3.1	General	30		
	6.3.2	Requirements for mechanical components	31		

	6.3.3	Serviceability limit states for mechanical components	31
	6.3.4	· · · · · · · · · · · · · · · · · · ·	0.4
	0.4	systems	
_	6.4	Robustness	
7		essment of reliability	
	7.1	Overview	
	7.1.1		
	7.1.2		
	7.1.4	, ,	
	7.1.5	, ,	
	7.2	Reliability-based method	
	7.2.1		
	7.2.2	,	
	7.2.3	, , , , , , , , , , , , , , , , , , , ,	
	7.2.4	1 01 ,	
	7.3	Semi-probabilistic method	
	7.3.1		
	7.3.2	•	
	7.3.3	9 9	
	7.3.4	, ,	
8	Site	suitability analysis	
	8.1	General approach and scope	37
	8.2	Reliability models for site suitability analysis	38
	8.2.1	General	38
	8.2.2	Load models for site suitability assessment	39
	8.2.3	Resistance model for site suitability assessment	40
	8.2.4	Structural performance on site specific conditions	41
	8.3	Site specific uncertainty modelling	41
	an 8.3.1	iteh.aGeneraly/standards/ise/38ce9c96-a745-4120-ad76-901bb89c3961/ise-t	s614(41 -9-2
	8.3.2	Quantification of site-specific uncertainties	45
	8.4	Reliability assessment	46
A	nnex A	(informative) Uncertainty quantification	47
	A.1	General	47
	A.2	Bayesian methods	47
	A.2.	General	47
	A.2.2	Closed form solutions for parameter estimation	48
	A.2.3		
	A.2.4	·	
	A.2.5		
	A.3	Maximum likelihood	
	A.4	Model uncertainties	52
	A.4.	l General	52
	A.4.2		
А	nnex B	(informative) Inverse FORM	
		(informative) Example calculations for reliability assessment	
,	C.1	General	
	C.1	Ultimate limit state	
	_		
	C.2.	1 Design equation	ს /

C.2.2	Limit state equation	67
C.2.3	Reliability assessment	68
C.2.4	Direct reliability-based design	69
C.2.5	Reliability-based calibration of partial safety factors	69
C.2.6	Assess the accuracy of the computation and perform sensitivity studies	70
C.3 Fat	igue limit state	71
C.3.1	General	71
C.3.2	Limit state equation	72
C.3.3	Reliability-based calibration of partial safety factors	74
Annex D (info	rmative) Formulation of event driven design load cases	76
D.1 Ge	neral	76
D.2 For	mulation of wind conditions with conditional events (Example DLC 2.3)	76
D.3 Pro	bability of failure for independent events (Example DLC 2.1)	77
Annex E (info	rmative) Updating of distributions based on evidence	79
E.1 Up	dating of distributions for basic variables	79
E.2 Eve	ent updating	80
Annex F (info	rmative) Example of the relative approach to site suitability assessment	81
Annex G (info	ormative) Uncertainty scenarios for site specific wind assessment	83
Bibliography.	· · · · · · · · · · · · · · · · · · ·	87
of wind turbin Figure 3 – Ty	pical flow chart and uncertainties to be considered in probabilistic design e components	18
		24
•	easures of reliability computation of failure probability	
	ghlight of relevant uncertainties related to site suitability assessment	42
value of X wh	Graphical representation of the structure for estimation of a) the mean en the population variance is known and b) the mean value and the	48
	Plot for estimation of model uncertainty	
_	Experiment value Y as function of theoretical value $h(x)$	
Figure A.4 – distribution, t	Cumulative distribution and probability density functions for the predictive he estimated lognormal distribution and the predictive distribution	
Figure A.5 –	Various approaches for MCMC models for model uncertainty	
Figure A.6 –	Probability density function for each method	61
	Cumulative distribution function for each method	
	Lower tail of the cumulative distribution function for each method	
	Lower tail of the cumulative distribution function for each method for a	62
	Contour line for ETM in the <i>u</i> -space and the linear approximation used in	65
	Contour lines for ETM, linear approximation (in the <i>u</i> -space), and the values defined in IEC 61400-1	66

Figure C.1 – Yearly (conditional) probability of failure for the calibration example with COV_{gen} = 20,0 % and γ_R = 1,35	75
Figure C.2 – Yearly (conditional) reliability index for the calibration example with COV_{gen} = 20,0 % and γ_R = 1,35	75
Table 1 – Minimum reliability requirements	14
Table A.1 – Theoretical and experimental values	54
Table A.2 – Stochastic model	58
Table A.3 – Parameters and moments estimated using each method	60
Table A.4 – Selected quantiles for the predictive distribution (including statistical/parameter uncertainty) and the fitted lognormal distribution (not including statistical/parameter uncertainty) using each method	60
Table C.1 – Baseline stochastic variables for load and resistance model	68
Table C.2 – Annual reliability index for different main wind turbine components (tower) and design situations (DLC 1.3 and 6.1)	69
Table C.3 – Resulting reliability index for different values of design parameter for simplified example	69
Table C.4 – Resulting reliability for different partial safety factor for loads (given $\gamma_{\rm M}$ = 1,2)	70
Table C.5 – Assessment of reliability index convergence with number of draws in Monte Carlo simulations	70
Table C.6 – Sensitivities of the reliability index with respect to each random variable in the limit state equation	71
Table C.7 – Baseline stochastic model for the fatigue limit state analysis	73
Table C.8 – Results for safety factor calibration exercise under different assumptions of COV _{gen}	74
Table F.1 – Stochastic model/standards.iten.ai/catalog/standards/iec/38cc9c96-a743-4120-ad76-901bb89c3961/iec-ts-6	81
Table G.1 – Uncertainty scenarios for anemometer calibration	83
Table G.2 – Uncertainty scenarios for mounting effects of anemometers	83
Table G.3 – Uncertainty scenarios for measurement heights	83
Table G.4 – Uncertainty scenarios for amount of available data	84
Table G.5 – Uncertainty scenarios for long-term wind speed distribution	84
Table G.6 – Uncertainty scenarios for extreme wind speed events	84
Table G.7 – Uncertainty scenarios for terrain map quality	84
Table G.8 – Uncertainty scenarios for wind shear modelling	85
Table G.9 – Uncertainty scenarios for terrain complexity	85
Table G.10 – Uncertainty scenarios for distance from measurement point to position of interest	85
	85

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Wind energy generation systems – Part 9: probabilistic design measures for wind turbines

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC https://sta.publications.ai/catalog/standards/iec/38ce9c96-a745-4120-ad76-901hb89c3961/iec-1s-61400-
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TS 61400-9 has been prepared by IEC technical committee 88: Wind energy generation systems. It is a Technical Specification.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting	
88/1063/DTS	88/1102/RVDTS	

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available