

IEC TS 62607-6-33

Edition 1.0 2025-10

TECHNICAL SPECIFICATION

Nanomanufacturing - Key control characteristics - Part 6-33: Graphene-related products - Defect density of graphene: electron energy loss spectroscopy

Document Preview

IEC TS 62607-6-33:2025

https://standards.iteh.ai/catalog/standards/iec/c516a643-a72c-4305-b500-c8a7f3e84806/iec-ts-62607-6-33-202

EC TS 62607-6-33:2025-10(en)

ICS 07.120 ISBN 978-2-8327-0795-1

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@jec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Preview

IEC TS 62607-6-33:2025

IEC TS 62607-6-33:2025 © IEC 2025

CONTENTS

FC	REWOF	!D	3
IN ⁻	TRODUC	CTION	5
1	Scope		6
2	•	tive references	
3		and definitions	
4		nmental condition	
5		e	
5	•		
		General Preparation of TEM sample for graphene grown by CVD method	
		Sample storage	
6		rement principle	
U		Seneral	
		Data interpretation	
7		rement procedure	
,		General	
		Detector	
		Description of the measurement procedure	
	7.3.1	Transmission electron microscope alignment	
	7.3.2	Measurementi.Tah. Standards	
		Defect density determination	16
	7.5 F	Report of the results	17
An	ınex A (iı	nformative) Format of the test report	18
		nformative) Sampling plan	
	,	General	
		Sampling plan depending on substrate (product type) geometry	
		itel Circular substrates 1./100/1051.626432720430565000827f3c84806/icots.	
	B.2.2	Square substrates	21
	B.2.3	Irregular shaped substrates	22
	B.3	Sampling plan depending on TEM grid geometry	23
	B.3.1	General	23
	B.3.2	300 mesh TEM grid	24
An	inex C (ii	nformative) Determination of boundary for graphene and defects	25
		nformative) Applications, worked examples: Defect density measurement of	
gra	aphene g	rown on Cu substrate by CVD	29
Bil	bliograph	y	33
Fig	gure 1 –	Preparation of TEM sample for graphene grown by CVD method	12
Fig	gure 2 –	Electron energy loss spectra of pristine (top) and defective (bottom) graphene	13
Fig	gure 3 –	Schematic diagram of defect density measurements by EELS	14
Fic	gure 4 –	Schematic diagram of π^*/σ^* amplitude ratio calculation by spectral image	16
Fig	gure B.1	Schematic of sample plan for circular substrates (in accordance with 607-6-11:2022)	
		– Schematic of sample plan for square substrates (in accordance with	∠ 1
		– Schematic of sample plan for square substrates (in accordance with	22

IEC TS 62607-6-33:2025 © IEC 2025

Figure B.3 – Example sampling plan for irregular sample (in accordance with IEC TS 62607-6-11:2022)	23
Figure B.4 – Schematic of sample plan for 300 mesh TEM grid	24
Figure C.1 – π^*/σ^* amplitude map defined as a number or image	27
Figure C.2 – Comparison of spectral backgrounds of graphene, defects, and boundary values (π^*/σ^* amplitude) in the high-loss energy region	28
Figure D.1 – Preparation of TEM specimens of CVD-grown graphene by direct transfer	29
Figure D.2 – Measurement of defect density of graphene by STEM-EELS	30
Table A.1 – Product identification (in accordance with the relevant blank detail specification)	18
Table A.2 – General material description (in accordance with the relevant blank detail specification)	18
Table A.3 – Measurement related information	19
Table B.1 – Sampling plan for circular substrates (in accordance with IEC TS 62607-6-11:2022)	21
Table B.2 – Sampling plan for square sample (in accordance with IEC TS 62607-6- 11:2022)	22
Table B.3 – Sampling plan for 300 mesh TEM grid	24
Table D.1 – Product identification	31
Table D.2 – General material description	31
Table D.3 – Measurement related information	31
(https://standards.iteh.ai)	
Document Preview	

EC TS 62607-6-33:2025

https://standards.iteh.ai/catalog/standards/iec/c516a643-a72c-4305-b500-c8a7t3e84806/iec-ts-62607-6-33-2025

IEC TS 62607-6-33:2025 © IEC 2025

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Nanomanufacturing - Key control characteristics Part 6-33: Graphene-related products - Defect density of graphene: electron
energy loss spectroscopy

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TS 62607-6-33 has been prepared by IEC technical committee 113: Nanotechnology for electrotechnical products and systems. It is a Technical Specification.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting	
113/913/DTS	113/932/RVDTS	

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.