

International Standard

ISO 16666

Surface chemical analysis — Total reflection X-ray fluorescence — Principles and general requirements Teh Standards

First edition 2025-11

(https://standards.iteh.ai)
Document Preview

<u> 1SO 16666:2025</u>

https://standards.iteh.ai/catalog/standards/iso/125e4bd4-1fd0-419a-98ba-8e40059992ee/iso-16666-2025

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>ISO 16666:2025</u>

https://standards.iteh.ai/catalog/standards/iso/125e4bd4-1fd0-419a-98ba-8e40059992ee/iso-16666-2025

COPYRIGHT PROTECTED DOCUMENT

© ISO 2025

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

ISO 16666:2025(en)

Con	ents	Page
Forew	rd	iv
Introd	ıction	v
1	Scope	1
2	Normative references	1
3	Terms, definitions and abbreviations	
3	3.1 Abbreviated terms	
4	Physical background of TXRF	2
	4.1 General	2
	4.2 Definition of angle and X-ray path in TXRF geometry	
	4.3 Beam projection	4
	4.4 X-ray standing waves (XSW) 4.5 Fluorescence intensity	
_		
5	nstrumental requirements	
	5.2 Beam conditioning	
	5.2.1 Requirement	
	5.2.2 Beam guidance	
	5.2.3 Beam modulation (tuning)	
	5.2.4 Measurement angles in TXRF	
	5.3.1 General requirements	
	5.3.2 Reflectors for chemical analysis	9
	5.4 Reflector alignment	9
	5.5 Detector (11ttps://stanuarus.item.ar)	
	5.6 Sample station	
	5.7 Control unit BOCHHELL Frey Lew	
6	Calibration and quality control	
	5.1 Angle inspection <u>1800 16666 2025</u> 5.2 Energy calibration 1800 1800 1800 1800 1800 1800 1800 180	
	5.3 Calibration of the element sensitivities	
	5.4 Inspection of the sample excitation	
	5.5 Inspection of the element detection	12
7	Spectra analysis and Reporting	12
	7.1 Spectra Processing	12
	7.2 Reporting Spectra	13
8	Samples	13
9	Qualitative and quantitative analysis	14
	9.1 Qualitative analysis	
	9.2 Quantitative analysis	
	9.2.1 Methods of quantitative analysis	
	Preparation of a measurement for quantitative analysis	15
	(internal standard addition)	16
	9.5 Verification of quantitative TXRF measurements	17
	9.6 Traceability in TXRF	
Annex	A (informative) Measurement angles in TXRF, background correction, peak correction,	
	spectrum deconvolution	18
Annex	B (informative) Round-robin test for verification of the precision and accuracy of TXRF	
	spectroscopy	21
Riblia	ranhv	22

ISO 16666:2025(en)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 201, *Surface chemical analysis*, Subcommittee SC 10, *X-ray Reflectometry (XRR) and X-ray Fluorescence (XRF) Analysis*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

ISO 16666-2025

https://standards.iteh.ai/catalog/standards/iso/125e4bd4-1fd0-419a-98ba-8e40059992ee/iso-16666-2025

ISO 16666:2025(en)

Introduction

Through general technical developments, total reflection X-ray fluorescence analysis (TXRF) has been developed into a robust independent physical method of instrumental analytical chemistry. TXRF is a distinct multi-element micro-method and a method of surface analysis. It is used for the simultaneous qualitative detection of the elements and quantification of the element masses. Notably, only small quantities of material are used for the analysis to benefit from all the advantages inherent to the procedure and thus to achieve correct analysis values. TXRF is used alongside other atomic spectroscopic methods, such as atomic absorption spectrometry (AAS) or inductively coupled plasma-based techniques (ICP-AES and ICP-MS) that are also established in the field of element analysis. In addition, TXRF is used in surface analysis and complements techniques such as Auger electron spectroscopy (AES), Rutherford backscattering spectrometry (RBS) or secondary ion mass spectrometry (SIMS). The rapid and in part non-destructive measurement process of a TXRF configuration allows screening or qualitative analysis of unknown flat, film-like and particulate samples and is therefore a valuable addition to other analytical techniques.

The main difference between TXRF and conventional X-ray fluorescence spectrometry (XRF) is the efficient way to excite the material to be examined to fluoresce which is achieved by a special geometrical arrangement in the spectrometer. The spectral background is drastically reduced, the fluorescence intensity increased resulting in a significant enhancement of the signal to noise ratio. Special sample treatment and sample presentation are required for this purpose. If these boundary conditions are met, TXRF achieves a high degree of accuracy and repeatability of the analyses, although a simplified calibration and quantification is used. The detection limits currently achievable with TXRF are approximately 10^{-12} g or 10^{10} atoms/cm² and are thus orders of magnitude lower than for XRF. The relative element concentrations are, depending on the matrix or the main components of the sample and for the elements to be examined, between 0,1 % and up to 10^{-9} for the low concentrations.

This document describes the physical principles and instrumentation required for TXRF analysis assuming that the conditions for total reflection are met, without referring to the samples' specificity. As a demonstration of the good reproducibility of the TXRF instruments, data from a round-robin test performed using centrally prepared and optimized samples are presented (see Annex B).

Other standards focussing on specific case studies and procedures are available for silicon wafers (see ISO 14706 and ISO 17331), environmental and biological samples (see ISO/TS 18507), and water (ISO 20289).

<u> 1SO 16666:2025</u>

https://standards.iteh.ai/catalog/standards/iso/125e4bd4-1fd0-419a-98ba-8e40059992ee/iso-16666-2025