
**Determination of particle density by
sedimentation methods —**

**Part 1:
Isopycnic interpolation approach**

*Détermination de la densité de particules par méthodes de
sédimentation —*

iTeH standards

Partie 1: Approche par interpolation isopycnique

(<https://standards.iteh.ai>)

Document Preview

[ISO 18747-1:2018](#)

<https://standards.iteh.ai/catalog/standards/iso/70fe5e93-3059-427d-a584-9e535b9bb4b3/iso-18747-1-2018>

Reference number
ISO 18747-1:2018(E)

© ISO 2018

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 18747-1:2018](#)

<https://standards.iteh.ai/catalog/standards/iso/70fe5e93-3059-427d-a584-9e535b9bb4b3/iso-18747-1-2018>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

Page

Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Symbols	2
5 Basic principle of method	2
6 Measuring techniques to determine the direction of gravitational and centrifugal migration of dispersed particles	4
7 Preparation of samples	5
7.1 Solutions	5
7.2 Dispersing procedure	6
8 Measurements	7
9 Data analysis	7
9.1 General	7
9.2 Graphical interpolation	8
9.3 Two point interpolation	8
9.4 Linear or non-linear fit	9
10 Reference materials and measurement uncertainty	10
10.1 Reference materials	10
10.2 Measurement uncertainty	10
Annex A (informative) Discrimination between sedimentation or creaming/floatation by bottom focused backscattering intensity	12
Annex B (informative) Determination based on measurement of direct migration velocity	15
https://standards.iteh.ai/catalog/standards/iso/70fe5e93-3059-427d-a584-9e535b9bb4b3/iso-18747-1-2018	18
Annex C (informative) Linearization of migration velocity versus density plots	22
Annex D (informative) Buoyant density centrifugation	24
Annex E (informative) Propagation of uncertainty for isopycnic velocity in the case of linear interpolation according to Formula (4)	25
Bibliography	27

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 24, *Particle characterization including sieving*, Subcommittee SC 4, *Particle characterization*.

A list of all parts in the ISO 18747 series can be found on the ISO website.

ISO 18747-1:2018

<https://standards.iteh.ai/catalog/standards/iso/70fe5e93-3059-427d-a584-9e535b9bb4b3/iso-18747-1-2018>

Introduction

Dispersions are widely used in industry and everyday life. There is a need to understand the density of dispersed particles or droplets, e.g. for physico-chemical calculations like kinematic viscosity of dispersions (ISO 3105), determination of particle size distribution by separation techniques^{[4][5][7]}, characterization of core/shell or capsule-like particles, determination of particle compressibility^[10] or optimization of dispersion stability by density matching^[11].

The density of a body is its mass divided by its volume. This is straightforward for the mass of a larger body or particle. However, experimental determination of the volume of a macroscopic body is difficult. The geometrical volume (length, width and thickness) and the volume relevant for the determination of density can differ due to surface irregularities, fractures, fissures and open and closed pores or the measuring techniques employed.

Density determination of micro-particles, in particular nanoparticles dispersed in a liquid, raises issues, not only for the determination of mass and volume due to the small size but also, and mainly, because of the boundary between the liquid and the particle, which is fuzzy. Molecules in the continuous phase are partially immobilized at the surface. Physico-chemical properties (e.g. viscosity, ion concentration) in the fuzzy coat differ from bulk. This is especially important for small microparticles and nanoparticles which are dispersed in a polymer or biological fluid^[12]. The so-called corona can be interpreted as an integral part of the particle and increases the effective/apparent volume compared to the space occupied by the dry material. The thickness of this layer ranges between a few to tens of nanometres and the effective/apparent volume deviates increasingly from the “geometrical” volume, if the particles become smaller. As a consequence, density determination by traditional methods is affected.

ITEH Standards
(<https://standards.iteh.ai>)
Document Preview

ISO 18747-1:2018

<https://standards.iteh.ai/catalog/standards/iso/70fe5e93-3059-427d-a584-9e535b9bb4b3/iso-18747-1-2018>