

International
Standard

ISO 21362

**Nanotechnologies — Analysis of
nano-objects using asymmetrical
flow and centrifugal field-flow
fractionation**

**First edition
2026-02**

*Nanotechnologies — Analyse des nano-objets par fractionnement
flux asymétrique et flux force centrifuge*

**iTeh Standards
https://standards.iteh.ai)
Document Preview**

[ISO 21362:2026](#)

<https://standards.iteh.ai/catalog/standards/iso/286df7fe-9438-4a9c-aca3-4752f73509f4/iso-21362-2026>

iTeh Standards

(<https://standards.iteh.ai>)

Document Preview

[ISO 21362:2026](#)

<https://standards.iteh.ai/catalog/standards/iso/286df7fe-9438-4a9c-aca3-4752f73509f4/iso-21362-2026>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2026

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

Page

Foreword	v
Introduction	vi
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Symbols and abbreviated terms	8
5 Principles of operation	10
5.1 Field-flow fractionation (FFF) — General	10
5.2 Specific applications by applied field	11
5.2.1 Flow field	11
5.2.2 Centrifugal field	13
6 Method development for asymmetrical flow field-flow fractionation (AF4)	15
6.1 General	15
6.2 Sample specifications	15
6.3 Mobile phase specifications	16
6.4 Fractionation	17
6.4.1 Channel and membrane selection	17
6.4.2 Injection and relaxation	19
6.4.3 Optimizing flow conditions	20
6.4.4 Elution programme	20
6.4.5 Using field-flow fractionation (FFF) theory to select initial flow settings	21
7 Method development for centrifugal field-flow fractionation (CF3)	21
7.1 General	21
7.2 Choice of mobile phase	21
7.3 Field strength selection	22
7.4 Field decay programme	22
7.5 Channel flow rate selection	22
7.6 Calculation of the relaxation time	23
7.7 Calculation of sample injection delay	23
7.8 Using field-flow fractionation (FFF) theory to select initial settings	23
8 Analysis of nano-objects	23
8.1 General	23
8.2 Online size analysis	23
8.3 Online concentration analysis	25
8.3.1 General	25
8.3.2 Mass-based methods	25
8.3.3 Number-based methods	26
8.4 Online material identification or composition	27
8.5 Off-line analysis (fraction collection)	27
8.6 Alternative and emerging methods	28
9 Qualification, performance criteria and measurement uncertainty	29
9.1 System qualification and quality control	29
9.1.1 Basic system qualification	29
9.1.2 Focusing performance	30
9.1.3 Flow rate of the carrier liquid	30
9.1.4 Separation field	30
9.2 Method performance criteria	31
9.2.1 Recovery	31
9.2.2 Selectivity	32
9.2.3 Retention ratio	32
9.2.4 Resolution	32

ISO 21362:2026(en)

9.3	Method precision and measurement uncertainty	32
10	General procedures for measurement of samples.....	33
10.1	Introduction.....	33
10.2	Calibration of retention time for online size analysis	33
10.2.1	Calibration of the asymmetrical flow field-flow fractionation (AF4) channel.....	33
10.2.2	Calibration of asymmetrical flow field-flow fractionation (AF4) retention time for online size measurements.....	34
10.3	Asymmetrical flow field-flow fractionation (AF4) general measurement procedure	34
10.4	Centrifugal field-flow fractionation (CF3) general measurement procedure.....	35
11	Test report.....	36
11.1	General.....	36
11.2	Apparatus and measurement parameters.....	36
11.2.1	Asymmetrical flow field-flow fractionation (AF4) recording and reporting specifications.....	36
11.2.2	Centrifugal field-flow fractionation (CF3) recording and reporting specifications	37
11.3	Test report.....	38
	Annex A (informative) Summary of interlaboratory comparison.....	39
	Bibliography.....	54

iTeh Standards (<https://standards.iteh.ai>) Document Preview

[ISO 21362:2026](#)

<https://standards.iteh.ai/catalog/standards/iso/286df7fe-9438-4a9c-aca3-4752f73509f4/iso-21362-2026>

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared jointly by Technical Committee ISO/TC 229, *Nanotechnologies* and Technical Committee IEC/TC 113, *Nanotechnology for electrotechnical products and systems*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 352, *Nanotechnologies*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement). The draft was circulated for voting to the national bodies of both ISO and IEC.

This first edition cancels and replaces ISO/TS 21362:2018, which has been technically revised.

The main changes are as follows:

- addition of [subclause 8.6](#) addressing alternative and emerging methods;
- revision of technical content to reflect the current state of the art;
- addition of [Annex A](#) summarizing an interlaboratory comparison conducted through VAMAS.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

The capacity to isolate and analyse diverse populations of nano-objects and their agglomerates or aggregates, often suspended in, or extracted from, complex matrices, is critical for applications ranging from materials discovery and nanomanufacturing to regulatory oversight and environmental risk assessment. Furthermore, the ability to characterize these analytes with minimal perturbation of their natural or native state is highly desirable. The list of available techniques capable of achieving such objectives is relatively short, and while all techniques have advantages and disadvantages, and no single technique is solely adequate or appropriate for all possible applications and materials, a group of related separation techniques known collectively as field-flow fractionation (FFF), conceptually proposed in Reference [1] offers many advantages for nanotechnology applications. In FFF, the analyte, suspended in a liquid medium, is fractionated by the application of a field (e.g. flow, centrifugal, electric, thermal-gradient, magnetic) perpendicular to the direction of flow of the analyte and mobile phase eluting through a thin defined channel. Separation occurs when the analyte responds to the applied field, such that populations with different response sensitivities reach equilibrium positions (i.e. in equilibrium with diffusional forces) higher or lower in the laminar flow streamlines perpendicular to channel flow, thus eluting differentially.

Among the FFF variants, asymmetrical flow FFF (variously abbreviated in the literature as AF4, A4F, AFFFF, AfFFF or AsFFF) and centrifugal FFF (abbreviated as CF3, also called sedimentation FFF associated with the abbreviation SdFFF), are available commercially and have been most widely adopted in the nanotechnology field (for convenience and simplicity, the abbreviations AF4 and CF3 are used throughout this document). AF4 is arguably the most versatile technique with respect to the wide range of applications, materials and particle sizes to which it has been applied. Symmetrical flow FFF (fffff), the original “flow-based” technique as first described in 1976,[2] has been supplanted commercially by AF4, introduced in 1987,[3] due to several advantages, including a simpler channel design, the ability to visualize the sample through a transparent top channel wall, and reduced analyte band width. The theory and application of CF3 as it is presently applied was described in 1974,[4] although a centrifugal field-based FFF system was first developed and tested independently in 1967.[5] Other FFF field variants, such as thermal, electrical and magnetic, provide unique capabilities, but are limited in the scope of their applications vis-à-vis nanotechnology or commercial availability.

Document Preview

Where FFF was once predominantly the domain of specialists, these instruments are now commonly and increasingly utilized in government, industry and academic laboratories as part of the nano-characterization toolbox. Two factors are driving this increase in nanotechnology utilization: maturation of commercial instrumentation and versatility with respect to coupling a wide range of detectors to FFF systems. In the latter case, recent developments have led to the use of highly sensitive elemental detectors (e.g. inductively coupled plasma mass spectrometer or ICP-MS), which offer enhanced characterization and quantification for many materials. Additionally, traditional concentration or sizing detectors, such as ultraviolet-visible (UV-Vis) absorbance, fluorescence, multi-angle light scattering (MALS) and dynamic light scattering (DLS), yield online data for eluting populations, and theoretically provide more accurate information than obtainable using off-line measurements of unfractionated polydisperse systems. The measured retention time of an eluting peak can also be used to estimate the hydrodynamic size by AF4 based on theoretical relationships or calibration with a known size standard. CF3 has the unique capacity to rapidly separate species of the same size but differing in density.

Although FFF based techniques have the capacity to separate and characterize analytes over an extremely broad size range, from about 1 nm up to tens of micrometres, this document focuses primarily on materials in the nanoscale regime and their associative structures. However, the basic underlying principles, experimental approach, and hardware described here can be more broadly applied.

For general references and further reading for FFF theory and practise, as well as AF4 and CF3 applications to nanotechnology, see References [6] to [18]. Annex A summarizes a Versailles Project on Advanced Materials and Standards (VAMAS) interlaboratory comparison conducted to evaluate the capacity of AF4 and CF3 techniques to separate and characterize components of a complex multimodal mixture of analytes reproducibly and with acceptable recovery and resolution across laboratories using different commercial instrument platforms and instrument configurations.

Nanotechnologies — Analysis of nano-objects using asymmetrical flow and centrifugal field-flow fractionation

1 Scope

This document describes the general principles of field-flow fractionation and specifies parameters, conditions and minimal reporting requirements, as part of an integrated measurement system, required to develop and validate methods for the application of asymmetrical flow and centrifugal field-flow fractionation in the analysis of nano-objects and their aggregates and agglomerates in aqueous media. General guidelines and procedures are provided to aid the user.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 80004-1:2023, *Nanotechnologies – Vocabulary — Part 1: Core vocabulary*

ISO/TS 80004-6:2021, *Nanotechnologies — Vocabulary — Part 6: Nano-object characterization*

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 80004-1 and ISO/TS 80004-6 and the following, apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— IEC Electropedia: available at <https://www.electropedia.org/>

— ISO Online browsing platform: available at <https://www.iso.org/obp>

3.1

nanoscale

length range approximately from 1 nm to 100 nm

[SOURCE: ISO 80004-1:2023, 3.1.1]

3.2

nano-object

discrete piece of material with one, two, or three external dimensions in the *nanoscale* (3.1)

[SOURCE: ISO 80004-1:2023, 3.1.5]

3.3

nanoparticle

nano-object (3.2) with all external dimensions in the *nanoscale* (3.1)

Note 1 to entry: If the dimensions differ significantly (typically by more than three times), terms such as nanofibre or nanoplate are preferred to the term nanoparticle.

[SOURCE: ISO 80004-1:2023, 3.3.4]