

International **Standard**

ISO 31657-2

Plain bearings — Hydrodynamic plain journal bearings under steady-state conditions —

Part 2:

Characteristic values for calculation of multilobed journal bearings

Paliers lisses — Paliers lisses hydrodynamiques radiaux fonctionnant en régime stabilisé —

Partie 2: Valeurs caractéristiques pour le calcul des paliers radiaux multilobés ls.iteh.ai/catalog/standards/iso/fd4ab23c-849d-41a9-914a-ae68c196d668/iso-31657-2-2025

First edition 2025-10

iTeh Standards

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 31657-2:2025

https://standards.iteh.ai/catalog/standards/iso/fd4ab23c-849d-41a9-914a-ae68c196d668/iso-31657-2-2025

COPYRIGHT PROTECTED DOCUMENT

© ISO 2025

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Conten	ts	Page
Foreword		iv
1 Sco	pe	1
2 Nor	mative references	1
3 Ter	Terms and definitions	
4.1	racteristic values for calculation of multi-lobed journal bearings General	1
4.2	Two-lobe bearings	4
4.3	Three-lobe bearings	20
4.4	Two-lobe bearings Three-lobe bearings Four-lobe bearings	32
Annex A (i	nformative) Characteristic curves for four-lobe bearings	50
Bibliogran	phy	67

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 31657-2:2025

https://standards.iteh.ai/catalog/standards/iso/fd4ab23c-849d-41a9-914a-ae68c196d668/iso-31657-2-2025

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 123, *Plain bearings*, Subcommittee SC 8, *Calculation methods for plain bearings and their applications*.

This first edition of ISO 31657-2 cancels and replaces ISO/TS 31657-2:2020, which has been technically revised.

The main changes are as follows: ISO 31657-2-2024

- https://standards.iteh.ai/catalog/standards/iso/fd4ab23c-849d-41a9-914a-ae68c196d668/iso-31657-2-2025 the title has been modified;
- Figure 1 has been updated.

A list of all parts in the ISO 31657 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Plain bearings — Hydrodynamic plain journal bearings under steady-state conditions —

Part 2:

Characteristic values for calculation of multilobed journal bearings

1 Scope

This document specifies the characteristic values for selected two-, three- and four-lobe bearings.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 31657-1:2025, Plain bearings — Hydrodynamic plain journal bearings under steady-state conditions — Part 1: Calculation of multi-lobed and tilting pad journal bearings

(https://standards.iteh.ai) 3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp1-ae68c196d668/iso-31657-2-2025
- IEC Electropedia: available at https://www.electropedia.org/

4 Characteristic values for calculation of multi-lobed journal bearings

4.1 General

The characteristics values plotted and listed in this clause are required for the operationally safe design of hydrodynamic multi-lobed journal bearings, in accordance with ISO 31657-1. They are based on the presumptions and boundary conditions indicated there and only apply to stationary operating states. The symbols used in this document shall be in accordance with ISO 31657-1:2025, Table 1; calculation examples are also given ISO 31657-1:2025, Annex A.

NOTE Equivalent calculation procedures exist that enable operating conditions to be estimated and checked against acceptable conditions. Another calculation procedure is equally admissible.

The characteristic values for two-, three- and four-lobe bearings with relative lubrication pocket widths of $b_{\rm P}^*=0.8$ are given in <u>4.2</u> to <u>4.4</u>. The characteristic values were calculated for the geometrical parameters summarised in <u>Figure 1</u> (angular spans of segment sliding surface, Ω , angular coordinates of lubricant pocket centrelines, $\phi_{\rm P,1}$, gap ratios, $h_{0,\rm max}^*$, bearing width ratios B^*) in the operating range $0.02 \le h_{\rm min}^* \le 1$.

The profile factors, K_P , associated with the indicated gap ratios, $h_{0,\text{max}}^*$, can be calculated for these bearing types as shown in Formulae (1) to (3):

for Z = 2

$$K_{\mathsf{P}} = h_{0,\mathsf{max}}^* \tag{1}$$

for Z = 3

$$K_{\rm P} = 2 \cdot h_{\rm 0, max}^* \tag{2}$$

for Z = 4

$$K_{\rm P} = \frac{h_{0,\rm max}^* - \frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}}} \tag{3}$$

The following (dimensionless) characteristic values are indicated in <u>Tables 1</u> to <u>43</u>.

a) Static characteristic values

The Sommerfeld number is given as Formula (4):

$$So = \frac{F \cdot \psi_{\text{eff}}^2}{B \cdot D \cdot \eta_{\text{eff}} \cdot \omega}$$
 iTeh Standards (4)

The relative eccentricity is given as Formula (5): dards.iteh.ai)

$$\varepsilon = \frac{e}{C_{\text{R,eff}}} \qquad \qquad \text{Document Preview}$$
 (5)

Attitude angle, β , in °.

For the product of maximum lubricant film pressure parameter and Sommerfeld number, see Formula (6):

$$p_{\text{max}}^* \cdot So = \frac{p_{\text{max}} \cdot \psi_{\text{eff}}^2}{\eta_{\text{eff}} \cdot \omega}$$
 (6)

For the minimum relative lubricant film thickness, see Formula (7):

$$h_{\min}^* = \frac{h_{\min}}{C_{\text{R,eff}}} \tag{7}$$

For the friction force parameter, see Formula (8):

$$F_{\rm f}^* = \frac{f}{\psi_{\rm eff}} \cdot So \tag{8}$$

For the lubricant flow rate parameter due to hydrodynamic pressure build-up, see Formula (9):

$$Q_3^* = \frac{Q_3}{Q_0} \tag{9}$$

For the lubricant flow rate parameter due to supply pressure, see Formula (10):

$$Q_{\rm p}^* = \frac{Q_{\rm p}}{P_{\rm en}^* \cdot Q_0} \tag{10}$$

For the lubricant flow rate parameter at the exit of the lubrication gap, see Formula (11):

$$Q_2^* = \frac{Q_2}{Q_0} \tag{11}$$

For non-dimensional difference between maximum lubricant temperature and lubricant temperature in the lubricant pockets, see Formula (12):

$$\Delta T_{\text{max}}^* = \frac{\rho \cdot c_{\text{p}} \cdot \psi_{\text{eff}}}{\overline{p} \cdot f} \cdot \Delta T_{\text{max}}$$
 (12)

b) Dynamic characteristic values

For non-dimensional lubricant film stiffness coefficients, see Formula (13):

$$c_{i,k}^* = \frac{\psi_{\text{eff}}^3}{2 \cdot B \cdot \eta_{\text{eff}} \cdot \omega} \cdot c_{i,k} \quad (i, k = 1, 2)$$

$$\tag{13}$$

For non-dimensional lubricant film damping coefficients, see Formula (14):

$$d_{i,k}^* = \frac{\psi_{\text{eff}}^3}{2 \cdot B \cdot \eta_{\text{eff}} \cdot \omega} \cdot \omega \cdot d_{i,k} \quad (i, k = 1, 2)$$
For some selected four-lobe bearings ($\Omega = 70^\circ$, $\varphi_{\text{P},1} = 315^\circ$), these characteristic values are shown graphically

For some selected four-lobe bearings ($\Omega = 70^\circ$, $\varphi_{P,1} = 315^\circ$), these characteristic values are shown graphically as a function of the Sommerfeld number So, the gap ratio $h_{0,\max}^*$ and the bearing width ratio B^* in Annex A, Figures A.1 to A.16.

ISO 31657-2·2025

https://standards.iteh.ai/catalog/standards/iso/fd4ab23c-849d-41a9-914a-ae68c196d668/iso-31657-2-2025