

International
Standard

ISO 5659

**Plastics — Smoke generation —
Determination of optical density by
a single-chamber test**

*Plastiques — Production de fumée — Détermination de la densité
optique par un essai en enceinte unique*

iTeh Standards
[**\(https://standards.iteh.ai\)**](https://standards.iteh.ai)
Document Preview

[ISO 5659:2026](#)

<https://standards.iteh.ai/catalog/standards/iso/8b312ab3-d38f-4550-97ad-d0ba23befd09/iso-5659-2026>

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 5659:2026](#)

<https://standards.iteh.ai/catalog/standards/iso/8b312ab3-d38f-4550-97ad-d0ba23befd09/iso-5659-2026>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2026

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	v
Introduction	vi
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Principles of the test	3
5 Suitability of a material or product for testing	3
5.1 Material or product geometry	3
5.2 Surface characteristics	3
5.3 Asymmetrical products	3
6 Specimen construction and preparation	4
6.1 Number of specimens	4
6.2 Size of specimens	4
6.3 Specimen preparation	4
6.4 Conditioning	5
6.5 Wrapping of specimens	5
6.6 Dimensionally unstable materials	5
7 Apparatus and ancillary equipment	6
7.1 General	6
7.2 Test chamber	6
7.2.1 Construction	6
7.2.2 Chamber pressure control facilities	7
7.2.3 Chamber wall temperature	10
7.3 Specimen support and heating arrangements	11
7.3.1 Radiator cone	11
7.3.2 Framework for support of the radiator cone, specimen holder and heat flux meter	11
7.3.3 Radiation shield	14
7.3.4 Heat flux meter	14
7.3.5 Specimen holder	14
7.3.6 Pilot burner	15
7.4 Gas supply	15
7.5 Photometric system	16
7.5.1 General	16
7.5.2 Light source	16
7.5.3 Photo detector	16
7.5.4 Additional equipment	18
7.6 Chamber leakage	18
7.7 Cleaning materials	19
7.8 Ancillary equipment	19
7.8.1 Balance (optional)	19
7.8.2 Timing device	19
7.8.3 Linear measuring devices	19
7.8.4 Auxiliary heater	19
7.8.5 Protective equipment	19
7.8.6 Recorder	19
7.8.7 Water-circulating device	19
7.8.8 Oxygen meter (optional)	19
8 Test environment	20
9 Setting-up and calibration procedures	20
9.1 General	20

9.2	Alignment of photometric system.....	20
9.2.1	General.....	20
9.2.2	Beam collimation.....	20
9.2.3	Beam focusing.....	20
9.3	Selection of compensating filter(s).....	21
9.4	Linearity check.....	21
9.5	Calibration of range-extension filter.....	21
9.6	Chamber leakage rate test.....	22
9.7	Burner calibration.....	22
9.8	Radiator cone calibration.....	22
9.9	Cleaning.....	23
9.10	Frequency of checking and calibrating procedure.....	23
10	Test procedure.....	24
10.1	General.....	24
10.2	Preparation of test chamber.....	24
10.3	Tests with pilot flame.....	24
10.4	Preparation of the photometric system.....	24
10.5	Loading the specimen.....	25
10.6	Recording of light transmission.....	25
10.7	Observations.....	25
10.8	Termination of test.....	25
10.9	Testing in different modes.....	26
11	Expression of results.....	26
11.1	Specific optical density, D_s	26
11.2	Clear-beam correction factor, D_c	27
12	Precision.....	27
13	Test report.....	27
Annex A (normative) Calibration of heat flux meter.....	29	
Annex B (informative) Variability in the specific optical density of smoke measured in the single-chamber test.....	30	
Annex C (informative) Determination of mass optical density.....	32	
Annex D (informative) Precision data from tests on intumescence materials.....	37	
Annex E (informative) Guidance on optical density testing.....	39	
Annex F (informative) Specific sample preparation.....	46	
Annex G (informative) Background to standard reference materials.....	49	
Bibliography.....	50	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 4, *Burning behaviour*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 249, *Plastics*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This first edition of ISO 5659 cancels and replaces ISO 5659-2:2017, which has been technically revised.

The main changes are as follows:

— [Annex G](#) has been added as background information.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Fire is a complex phenomenon; its development and effects depend upon a number of interrelated factors. The behaviour of materials and products depends upon the characteristics of the fire, the method of use of the materials and the environment in which they are exposed to (see also ISO/TS 3814^[1] and ISO 13943).

A test such as is specified in this document deals only with a simple representation of a particular aspect of the potential fire situation, typified by a radiant heat source, and it cannot alone provide any direct guidance on behaviour or safety in fire. A test of this type may, however, be used for comparative purposes or to ensure the existence of a certain quality of performance (in this case, smoke production) considered to have a bearing on fire behaviour generally. It would be wrong to attach any other meaning to results from this test.

The term “smoke” is defined in ISO 13943 as a visible suspension of solid and/or liquid particles in gases resulting from incomplete combustion. It is one of the first response characteristics to be manifested and should almost always be taken into account in any assessment of fire hazard as it represents one of the greatest threats to occupants of a building or other enclosure, such as a ship or train, on fire.

The responsibility for the preparation of ISO 5659 was transferred during 1987 from ISO/TC 92 to ISO/TC 61 on the understanding that the scope and applicability of the standard for the testing of materials should not be restricted to plastics but should also be relevant to other materials where possible, including building materials. See [Annex G](#) for further information.

iTeh Standards (<https://standards.iteh.ai>) Document Preview

[ISO 5659:2026](#)

<https://standards.iteh.ai/catalog/standards/iso/8b312ab3-d38f-4550-97ad-d0ba23befd09/iso-5659-2026>

Plastics — Smoke generation — Determination of optical density by a single-chamber test

1 Scope

This document specifies a method of measuring smoke production from the exposed surface of specimens of materials or composites. It is applicable to specimens that have an essentially flat surface and do not exceed 25 mm in thickness when placed in a horizontal orientation and subjected to specified levels of thermal irradiance in a closed cabinet with or without the application of a pilot flame. This method of test is applicable to all plastics.

It is intended that the values of optical density determined by this test be taken as specific to the specimen or assembly material in the form and thickness tested and are not to be considered inherent, fundamental properties.

The test is intended primarily for use in research and development and fire safety engineering in buildings, trains, ships, etc. and not as a basis for ratings for building codes or other purposes. No basis is provided for predicting the density of smoke that can be generated by the materials upon exposure to heat and flame under other (actual) exposure conditions. This test procedure excludes the effect of irritants on the eye.

NOTE This test procedure addresses the loss of visibility due to smoke density, which generally is not related to irritancy potency (see [Annex E](#)).

It is emphasized that smoke production from a material varies according to the irradiance level to which the specimen is exposed. The results yielded from the method specified in this document are based on exposure to the specific irradiance levels of 25 kW/m² and 50 kW/m².

2 Normative references

[ISO 5659:2026](#)

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 291, *Plastics — Standard atmospheres for conditioning and testing*

ISO 13943, *Fire safety — Vocabulary*

ISO 14934-3, *Fire tests — Calibration and use of heat flux meters — Part 3: Secondary calibration method*

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 13943 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <https://www.electropedia.org/>

3.1 assembly

fabrication of *materials* ([3.6](#)) and/or *composites* ([3.2](#))

Note 1 to entry: Sandwich panels are an example of an assembly.