FINAL DRAFT International Standard Water quality — Determination of selected estrogens in whole water samples — Method using solid phase extraction (SPE) followed by liquid chromatography (LC) or gas chromatography (GC) coupled to mass spectrometry (MS) detection Qualité de l'eau — Dosage d'æstrogènes sélectionnés dans des échantillons d'eau totale — Méthode par extraction en phase solide (SPE) suivie d'une détection par chromatographie en phase liquide (CL) ou en phase gazeuse (CG) couplée à la spectrométrie de masse (SM) ## **ISO/FDIS 13646** ISO/TC **147**/SC **2** Secretariat: DIN Voting begins on: **2025-07-10** Voting terminates on: 2025-09-04 000 000 / 999 00110 1110/100 1010 100 10 ISO/CEN PARALLEL PROCESSING RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION. IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS. ## iTeh Standards (https://standards.iteh.ai) Document Preview #### ISO/FDIS 13646 https://standards.iteh.ai/catalog/standards/iso/bf4f7ac4-b261-4c6a-bb37-999a6ff84ffc/iso-fdis-13646 #### COPYRIGHT PROTECTED DOCUMENT © ISO 2025 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Contents | | | Page | |----------|-----------------------------------|---|----------| | Fore | word | | v | | Intr | oductio | n | vi | | 1 | Scope | 2 | 1 | | 2 | • | native references | | | 3 | Terms, definitions and subscripts | | | | 3 | 3.1 | Terms and definitions | | | | 3.2 | Subscripts | | | 4 | Princ | ciple | 4 | | 5 | Interferences | | | | 3 | 5.1 | General | | | | 5.2 | Interferences with sampling, extraction and concentration | | | | 5.3 | Interferences during high performance liquid chromatography and mass spectrometry | 6 | | | 5.4 | Interferences during gas phase chromatography and mass spectrometry | 7 | | | 5.5 | Interferences from internal standards | 8 | | 6 | Reag | ents | 8 | | 7 | Appa | ratus | 14 | | 8 | Samr | oling | 16 | | 9 | - | edure | | | 9 | 9.1 | General Cab Standards | | | | 9.2 | Sample preparation and extraction | 18 | | | J.2 | 9.2.1 General | | | | | 9.2.2 Sample preparation | | | | | 9.2.3 SPE cartridge extraction | | | | | 9.2.4 SPE disk Extraction | | | | 9.3 | Sample clean-up (purification) | | | | | 9.3.1 General ISO/FDIS 136/6 | | | | | 9.3.2 Principle <u>ISO/FDIS 13646</u>
9.3.3 Procedure g/standards/iso/bf4f7ac4-b261-4c6a-bb37-999a6ff84ffc/iso-fdis-1366 | | | | 9.4 | Reconcentration | | | | 9.5 | Liquid chromatography coupled to mass spectrometry | | | | | 9.5.1 High performance liquid chromatography (LC) | | | | | 9.5.2 Detection | 22 | | | | 9.5.3 Derivatization | | | | 9.6 | Gas chromatography coupled to mass spectrometry | | | | | 9.6.1 Derivatization | 24 | | | | 9.6.3 Detection | | | 4.0 | 6 111 | | | | 10 | 10.1 | ration | | | | 10.1 | General Calibration by isotope dilution | | | | 10.2 | Calibration check | | | 11 | | | | | 11 | 11.1 | ty assurance and quality control (QA/QC) | 27 | | | 11.1 | Blanks | | | 12 | | of quantification (LOQ) | | | | | - | | | 13 | | conoral | | | | 13.1
13.2 | General Calculation of analyte recovery using samples | | | | 13.2 | Recovery rates from internal standards | | | | | | | | 14 Calculation of the concentration in the sample | 29 | |--|----| | 15 Expression of results | 30 | | 16 Test report | 30 | | 17 Performance data | 31 | | Annex A (informative) Performance data | 32 | | Annex B (informative) Examples of SPE cartridge extraction protocols | | | Annex C (informative) Examples of SPE disk extraction protocols | 37 | | Annex D (informative) Examples of SPE clean-up protocols | 39 | | Annex E (informative) Examples of LC-MS/MS protocols | 41 | | Annex F (informative) Example of LC-HRMS protocol | 52 | | Annex G (informative) Examples of GC-MS/MS protocols | 56 | | Annex H (informative) Example of GC-HRMS protocol | 61 | | Bibliography | | ## iTeh Standards (https://standards.iteh.ai) Document Preview #### ISO/FDIS 13646 https://standards.iteh.ai/catalog/standards/iso/bf4f7ac4-b261-4c6a-bb37-999a6ff84ffc/iso-fdis-13646 #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights. Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 147, *Water quality*, Subcommittee SC 2, *Physical, chemical and biochemical methods*. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. ISO/FDIS 13646 https://standards.iteh.ai/catalog/standards/iso/bf4f7ac4-b261-4c6a-bb37-999a6ff84ffc/iso-fdis-13646 #### Introduction Natural and synthetic estrogens are widely used worldwide, e.g. for contraception. Through application or improper disposal, these estrogens can enter the water cycle unchanged or transformed. They can therefore be detected in surface and groundwater, as well as in treated wastewater. It is known that estrogens can end up in surface waters via wastewater, and due to their physicochemical properties, they can partition in the different compartments [water and suspended particulate matter (SPM)] of water systems. They are of rising concern, due to their high estrogenic activity even at the measured ultra-trace levels (far below ng/l). Beside feminised fish and other endocrine disruptive effects in water ecosystems, they can also be a factor in biodiversity loss. Therefore, appropriate measurement methods are required to monitor estrogen levels below their ecotoxicological level [e.g. predicted no effect concentration (PNEC) or environmental quality standard (EQS)] and accordingly demonstrate if a water body is at risk. This document specifies validated methods for analysing water samples in monitoring programs aiming at qualifying the quality of the water environment with respects to the selected estrogens. ## iTeh Standards (https://standards.iteh.ai) Document Preview <u>ISO/FDIS 13646</u> https://standards.iteh.ai/catalog/standards/iso/bf4f7ac4-b261-4c6a-bb37-999a6ff84ffc/iso-fdis-13646 # Water quality — Determination of selected estrogens in whole water samples — Method using solid phase extraction (SPE) followed by liquid chromatography (LC) or gas chromatography (GC) coupled to mass spectrometry (MS) detection WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices. IMPORTANT — It is absolutely essential that tests conducted in accordance with this document be carried out by suitably qualified staff. #### 1 Scope This document specifies methods for the determination of five selected estrogens in whole water samples listed in <u>Table 1</u> (see <u>Clause 4</u>). The methods are based on solid-phase extraction (SPE; disk or cartridge) followed by liquid or gas chromatography-mass spectrometry detection (tandem mass spectrometry or high resolution mass spectrometry). Depending on the sample preparation chosen, the sample preparation can be applicable to the analysis of selected estrogens in drinking water, groundwater and surface water containing suspended particulate matter (SPM) up to 500 mg/l, dissolved organic carbon (DOC) content up to 14 mg/l (whole water samples). The lower application range defined as verified limit of quantification can vary depending on the methods, the sensitivity of the equipment used and the matrix of the sample. The range is 0,006 ng/l to 1 ng/l for 17alpha-ethinylestradiol (EE2) and 0,038 ng/l to 1 ng/l for the other estrogens in drinking water, ground water and surface water. The upper limit of the working range is approximately tens of nanograms per litre. For application that targets the measurements of very low level concentrations (between the lowest LOQ and 0,1 ng/l) every single step of the procedure become critical. The methods can be used to determine further estrogens or hormones in other types of water, for example treated wastewater, if accuracy has been tested and verified for each case as well as storage conditions of both samples and reference solutions have been validated. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 8466-1:2021, Water quality — Calibration and evaluation of analytical methods — Part 1: Linear calibration function ISO 21253-1:2019, Water quality — Multi-compound class methods — Part 1: Criteria for the identification of target compounds by gas and liquid chromatography and mass spectrometry ISO 11352:2012, Water quality — Estimation of measurement uncertainty based on validation and quality control data