
**Earth-moving machinery — Collision
warning and avoidance —**

**Part 2:
On-board J1939 communication
interface**

iTEH Standards
Engins de terrassement — Avertissement et évitement de collision —
Partie 2: Interface de communication embarquée
(<https://standards.iteh.ai>)
Document Preview

[ISO/TS 21815-2:2021](#)

<https://standards.iteh.ai/catalog/standards/iso/136e0337-2e4e-411a-bfa3-6b5f68234409/iso-ts-21815-2-2021>

Reference number
ISO/TS 21815-2:2021(E)

© ISO 2021

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO/TS 21815-2:2021](#)

<https://standards.iteh.ai/catalog/standards/iso/136e0337-2e4e-411a-bfa3-6b5f68234409/iso-ts-21815-2-2021>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

Page

Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Symbols and abbreviated terms	5
5 Logical interface	5
5.1 Logical groups	5
5.2 Negotiation	6
5.3 Initialisation	6
5.4 Operation	6
6 Physical interface	7
6.1 General	7
6.2 Machine connector	7
6.3 CxD connector	8
6.4 Override switch	9
6.5 Physical layer	10
7 J1939 communication protocol	10
7.1 General	10
7.2 PGN:CxD»machine status	11
7.2.1 General	11
7.2.2 PGN description	12
7.2.3 SPN structure	14
7.3 PGN:CxD»MachineCommand	37
7.3.1 General	37
7.3.2 PGN description	37
7.3.3 SPN structure	39
7.4 PGN:Machine»CxDreply	43
7.4.1 General	43
7.4.2 PGN description	45
7.4.3 SPN structure	46
7.5 PGN:Machine»CxData (PROPULSION)	54
7.5.1 General	54
7.5.2 PGN description	55
7.5.3 SPN structure	56
7.5.4 PROPULSION subsystem	57
7.6 PGN:Machine»CxDstatus	62
7.7 PGN:Machine»CxDcommand	62
7.8 PGN:CxD»MachineReply	63
7.9 PGN:CxD»MachineData	63
7.10 PGN:Time/Date	63
8 Documentation	64
8.1 Machine documentation	64
8.2 System documentation	64
Annex A (informative) Communication sequences	66
Annex B (informative) Trust mechanisms	74
Annex C (informative) Implementation examples for override and standby modes	80
Bibliography	82

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 127, *Earth-moving machinery*, Subcommittee SC 2, *Safety, ergonomics and general requirements*.

A list of all parts in the ISO 21815 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

The increasing use of detection systems and avoidance technology has been supporting operators to safely operate machines in the field of mining and construction. At the same time, there are demands to set standards for machines and systems detecting, alerting and intervening to mitigate collision risk.

There are currently two existing standards in the field: ISO 16001 and ISO 17757. These standards provide guidance for visibility aids and object detection systems and for autonomous and semi-autonomous machines, however, there is currently no standard that describes collision risk awareness, warning signals and collision avoidance actions of the machinery operated by humans where there is a risk of collision.

Collision warning and avoidance systems are developing technologies; and the algorithms are not yet mature and well understood. This document is intended to foster innovation and accelerate the pace of improvements in new collision warning and avoidance technologies. The performance requirements of this document are technology neutral and do not specify technologies to meet the requirements.

The systems described in this document are intended to assist the operator of the machine. As current technologies are unable to achieve full collision warning/avoidance in every situation, the responsibility for safe operation of the machine remains with the operator of the machine.

This document defines a protocol for communication between a machine and a connected device to allow the connected device to command the machine to slow down, stop or to maintain a stationary state where the machine can move in a linear (i.e. forwards-backwards) direction along a travel path. Machines with rotational movements (e.g. excavators) and machines with compound movements (e.g. machines with booms) are only considered to the extent of the linear component of their travel.

The machine manufacturer may be flexible in deciding which method is most appropriate for their machine. Some applications can be delivered with basic functionality (e.g. without the use of registers). Regardless of which approach is selected, the connected device has a means to discover the capabilities of the machine.

[Annex B](#) outlines a mechanism for establishing trust between the machine and the connected device based on the exchange of certificates at the session layer as defined by the machine manufacturer. The message structure for the session layer can be different to the message structure defined in this document.

The specification of the J1939 protocol in this document does not preclude the development of other communication interfaces that can support collision warning and avoidance functionality. At the time of publishing this document, protocols have only been defined for SAE J1939 due to the general availability of CAN 2.0 interfaces on machinery and devices providing collision warning and avoidance functions.

Earth-moving machinery — Collision warning and avoidance —

Part 2: On-board J1939 communication interface

1 Scope

This document describes the on-board J1939 communication interface between a connected device and mobile machines for use in earth-moving, mining and road construction applications to enable interventional collision avoidance actions defined in ISO 21815-1 based on the SAE J1939 protocol. This interface is intended for use by a collision avoidance system (CAS) device integrated independently from the original machine providing intervention signals to slow down, stop or prevent motion of the machine. The protocol defined by this document can also be used to provide input information for a collision warning system (CWS).

This document is not intended for plug-and-play implementation of CAS or CWS on the machine. Additional details not fully described in this document can be negotiated by the CAS or CWS manufacturer and the machine manufacturer to enable functionality.

This document does not preclude the possibility of the machine manufacturer or the CxD manufacturer developing alternative on-board communication interfaces.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 19014-3, *Earth-moving machinery — Functional safety — Part 3: Environmental performance and test requirements of electronic and electrical components used in safety-related parts of the control system*

SAE J1939-15, *Reduced Physical Layer, 250 kbits/sec, UN-Shielded Twisted Pair (UTP)*

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <http://www.electropedia.org/>

3.1

collision warning system

CWS

system which detects intended objects in the collision risk area, evaluates the collision risk level and provides a warning to the operator

[SOURCE: ISO 21815-1:—, 3.8]