

SLOVENSKI STANDARD oSIST prEN IEC 61439-6:2025

01-december-2025

Sestavi nizkonapetostnih stikalnih in krmilnih naprav - 6. del: Zbiralčni povezovalni sistemi (zbiralčna vodila)

Low-voltage switchgear and controlgear assemblies - Part 6: Busbar trunking systems (busways)

Niederspannungs-Schaltgerätekombinationen - Teil 6: Schienenverteilersysteme (busways)

Ensembles d'appareillage à basse tension - Partie 6: Systèmes de canalisation préfabriquée

Document Preview

Ta slovenski standard je istoveten z: prEN IEC 61439-6:2025

oSIST prEN IEC 61439-6:2025

https://standards.itch.ai/catalog/standards/sist/98d512c9_ba18_4b8b_8b77_a981df6acfc1/osist_pren_icc_61439_6-202

ICS:

29.130.20 Nizkonapetostne stikalne in

Low voltage switchgear and

krmilne naprave

controlgear

oSIST prEN IEC 61439-6:2025

en

iTeh Standards (https://standards.iteh.ai) Document Preview

oSIST prEN IEC 61439-6:2025

https://standards.iteh.ai/catalog/standards/sist/98d512c9-ba18-4b8b-8b77-a981df6aefc1/osist-pren-iec-61439-6-2025

PROJECT NUMBER: IEC 61439-6 ED2

2025-10-24

DATE OF CIRCULATION:

SUPERSEDES DOCUMENTS: 121B/205/CD, 121B/220/CC

121B/223/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

CLOSING DATE FOR VOTING:

2026-01-16

IEC SC 121B: LOW-VOLTAGE SWITCHGEAR AND CONTROLGEAR ASSEMBLE	BLIES			
SECRETARIAT:	SECRETARY:			
Germany	Mr Jörg Hußmann			
OF INTEREST TO THE FOLLOWING COMMITTEES:	HORIZONTAL FUNCTION(S):			
TC 121, SC 121A				
ASPECTS CONCERNED:				
Electromagnetic Compatibility, Safety				
Submitted for CENELEC parallel voting Teh Sta	☐ NOT SUBMITTED FOR CENELEC PARALLEL VOTING			
Attention IEC-CENELEC parallel voting	Handa itah ai)			
The attention of IEC National Committees, members of CENELEC,	lards.iteh.ai)			
is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting.	t Preview			
The CENELEC members are invited to vote through the CENELEC				
online voting system.	C 61439-6:2025			
	e 61439-6.2025 a18-4b8b-8b77-a981df6aefc1/osist-pren-iec-61439-6-20			
This document is still under study and subject to change. It should not be used for reference purposes.				
Recipients of this document are invited to submit, with their commentant to provide supporting documentation.	nts, notification of any relevant patent rights of which they are aware			
·	ents, notification of any relevant "In Some Countries" clauses to be at the CDV stage is the final stage for submitting ISC clauses. (SEE			
T				
TITLE:	out C. Buch on throughing a suptame (houses)			
Low-voltage switchgear and controlgear assemblies – Pa	rt 6: Busbar trunking systems (busways)			
PROPOSED STABILITY DATE: 2029				
NOTE FROM TC/SC OFFICERS:				

Copyright © 2025 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

CONTENTS

i	FOREWORD				
	1 Scope				
2	2 Normat	tive references	9		
;	3 Terms	and definitions	11		
4	4 Symbo	ls and abbreviations	15		
	5 Interfac	ce characteristics	15		
	5.1	General	15		
	5.2.4	Rated impulse withstand voltage ($U_{ m imp}$) (of the assembly)	16		
	5.3.1	Rated current of an assembly (I_{nA})			
	5.3.2	Rated current of a main outgoing circuit $(I_{ m nc})$			
	5.3.3	Group rated current of a main circuit ($I_{ m ng}$)			
	5.4	Rated diversity factor (RDF)			
	5.5	Rated frequency (f _n)	19		
	5.6	Other characteristics			
	5.101	Phase conductor and fault-loop characteristics	19		
	5.102	Electromagnetic flux density	22		
(6 Informa	ation			
	6.1	Assembly designation marking	22		
	6.2.2	Instructions for handling, installation, operation and maintenance			
-	7 Service	conditions	22		
	7.1.2	Pollution degree	22		
	7.2	Special service conditions	22		
		uctional requirements			
	8.1.1	General			
	8.1.5	Mechanical strength			
	8.1.101	Ability to withstand mechanical loads			
	8.1.102	Ability of plug-in power connection units to withstand thermal variations			
	8.2.1	Protection against mechanical impact (IK code)	24		
	8.2.2	Protection against contact with live parts, ingress of solid foreign bodies and water (IP code)	24		
	8.3.2	Clearances	25		
	8.3.3	Creepage distances	25		
	8.4.3	Fault Protection	25		
	8.5.2	Removable parts	25		
	8.5.5	Accessibility	25		
	8.6.101	Correct connection between busbar trunking units (BTUs)	25		
	8.6.102	Correct connection between busbar trunking runs	25		
9	9 Perforn	nance requirements	26		
	9.2	Temperature-rise limits	26		
	9.101	Optional: Resistance to flame-propagation			
	9.102	Optional: Fire resistance in building penetration	26		

10 Design	verification	27
10.1	General	27
10.2.5	Lifting	27
10.2.6	Verification of protection against mechanical impact (IK code)	28
10.2.8	Mechanical operation	
10.2.101	Ability to withstand mechanical loads	
	Thermal cycling test of joints in a BT run	
10.2.103	Thermal cycling test of plug-in power connection units	
10.3	Degree of protection of BTS (IP Code)	
10.5.3	Short-circuit withstand strength of the protective circuit	
10.10	Temperature-rise	
10.10.1	General	
10.10.2	Verification by testing	
10.10.3	Verification by comparison	
10.10.4	Verification assessment	
10.11	Short-circuit withstand strength	
10.11.1	General	
10.11.3	Verification by comparison with a reference design – Using a checklist	
10.11.5	Verification by test	
10.101	Optional design verification: Resistance to flame-propagation	
10.102	Optional design verification: Fire resistance in building penetrations	48
11 Routine	verifications	49
11.1	verifications Document Preview	49
	oSIST prEN IEC 61439-6:2025	
Annex AA ai	(informative) Items subject to agreement between the BTS manufacturer and the user	
Annex BB	(informative) Design verification	
Annex CC	(informative) Calculation of voltage drop of the system	57
Annex DD	(informative) Phase conductor characteristics	
Annex EE	(informative) Fault-loop zero-sequence impedances	
Annex FF	(informative) Fault-loop resistances and reactances	
Annex GG	(informative) Determination of the magnetic flux density in the vicinity of	
7 timex 3 3	the BTS	67
Annex HH	(informative) cracks-detection-test evaluation to BTS with solid insulation or over moulding insulation	69
Annov II	-	
Annex II	(informative) List of notes concerning certain countries	/ 1
Bibliography		72
Figures 101	102, 103 Examples of phase transposition BTU	12
-		
Figure 104	Example of conductor sequence changer BTU	
Figure 105	Orientation horizontal edgewise	17
Figure 106	Orientation horizontal flatwise	

Figure 107	Positions of a PCU on a horizontal BTU with tap-off facilities	18
Figure 108	Mechanical load test of a straight unit	29
Figure 109	Mechanical load test of a joint	30
Figure 110a	Test arrangement for verification of a fire-barrier BTU in a floor	49
Figure 110b	Test arrangement for verification of a fire-barrier BTU in a wall	49
Figure DD.1	Phase conductors characteristics determination	58
Figure EE.1	Fault loop (phases - Neutral) zero-sequence impedances determination	61
Figure EE.2	Fault loop (phases – PE) zero-sequence impedances determination	61
Figure FF.1	Fault loop (here: $L1 - N$) resistances and reactances determination	64
Figure FF.2	Fault loop (here: L1 – PE) resistances and reactances determination	64
Figure GG.1	Magnetic flux density measurement arrangement	67
Figure HH.1	Example of BTS with an over moulded insulation	69
Figure HH.2	Example of test setup	70
Table 101	Assumed loading factors for a tap-off power connection unit	19
Table 102	Phase conductor characteristics	20
Table 103	Fault-loop characteristics	21
Table 104	Characteristics to be used for fault currents calculations	21
Table 105	Conditioning for the thermal cycling test	33
Table AA.1	Items subject to agreement between the BTS manufacturer and the user	51
Table BB.1	List of design verifications to be performed	55
	Document Preview	

CICT ---EN IEC (1420 (-2025

https://standards.jteh.ai/catalog/standards/sist/98d512c9-ba18-4b8b-8b77-a981df6aefc1/osist-pren-jec-61439-6-202

INTERNATIONAL ELECTROTECHNICAL COMMISSION

LOW-VOLTAGE SWITCHGEAR AND CONTROLGEAR ASSEMBLIES -

Part 6: Busbar trunking systems (busways)

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinions on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or https://standarother damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses 9-6-2025 arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61439-6 has been prepared by subcommittee SC 121B/MT3: Low-voltage switchgear and controlgear assemblies, of IEC technical committee TC 121: Switchgear and controlgear and their assemblies for low voltage.

This second edition cancels and replaces the first edition and constitutes a technical revision.

This second edition includes the following significant technical changes with respect to the first edition:

- alignment on the third edition of IEC 61439-1: 2020 regarding the structure and technical content, as applicable;
- introduction of 3 different types of power connection units (PCU's) (see 3.112, 3.113, 3.114)
- introduction of new verifications, accordingly;
 - new verifications regarding lifting (see 10.2.5), IP codes (see 10.3) and IK codes (see 10.2.6);