

SLOVENSKI STANDARD oSIST prEN IEC 61851-21-1:2025

01-december-2025

Sistemi za prenos prevodne moči in energije za električna vozila - 21-1. del: Zahteve EMC za vgrajen napajalnik pri kabelski priključitvi na izmenično/enosmerno napajanje

Conductive power and energy transfer systems for electric vehicles - Part 21-1: Electric vehicle on-board charger EMC requirements for conductive connection to AC/DC supply

iTeh Standards

Systèmes de transfert d'énergie et de puissance conductive pour véhicules électriques -Partie 21-1: Exigences CEM relatives à la connexion conductive des chargeurs embarqués pour véhicules électriques à une alimentation en courant alternatif ou continu

Ta slovenski standard je istoveten z: prEN IEC 61851-21-1:2025

https://standards.iteh.ai/catalog/standards/sist/6e6586ee-a7ce-4686-b1dc-11c0bbfd5329/osist-pren-iec-61851-21-1-2025

ICS:

43.120 Električna cestna vozila Electric road vehicles

oSIST prEN IEC 61851-21-1:2025 en

oSIST prEN IEC 61851-21-1:2025

iTeh Standards (https://standards.iteh.ai) Document Preview

oSIST prEN IEC 61851-21-1:2025

https://standards.iteh.ai/catalog/standards/sist/6e6586ee-a7ce-4686-b1dc-11c0bbfd5329/osist-pren-iec-61851-21-1-2025

PROJECT NUMBER: IEC 61851-21-1 ED2

DATE OF CIRCULATION:

ASPECTS CONCERNED:

Electromagnetic Compatibility

69/1078/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

CLOSING DATE FOR VOTING:

	2025-10-10		2026-01-02
	SUPERSEDES DOCUM	MENTS:	
	69/959/CD, 69/10)75/CC	
IEC TC 69 : ELECTRICAL POWER/ENERGINDUSTRIAL TRUCKS	SY TRANSFER SYSTEM	IS FOR ELECTRICALL	Y PROPELLED ROAD VEHICLES AND
Secretariat:		SECRETARY:	
Belgium		Mr Peter Van de	en Bossche
OF INTEREST TO THE FOLLOWING COMM	ITTEES:	HORIZONTAL FUNC	TION(S):
TC 77,CISPR			

Attention IEC-CENELEC parallel voting

SUBMITTED FOR CENELEC PARALLEL VOTING

NOT SUBMITTED FOR CENELEC PARALLEL VOTING

The attention of IEC National Committees, members of

CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting.

The CENELEC members are invited to vote through the CENELEC online voting system.

-4686-b1dc-11c0bbfd5329/osist-pren-iec-618\$1-21-1-2025

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE AC/22/2007 OR NEW GUIDANCE DOC).

TITLE:

Conductive power and energy transfer systems for electric vehicles - Part 21-1 Electric vehicle on-board charger EMC requirements for conductive connection to AC/DC supply

PROPOSED STABILITY DATE: 2028

Copyright © 2025 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

1	Conductive power and energy transfer systems for electric road
2	vehicles
3	- Part 21-1: Electric vehicle on-board charger EMC requirements
4	for conductive connection to an a.c./d.c. supply
_	•••

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>oSIST prEN IEC 61851-21-1:2025</u>

https://standards.iteh.ai/catalog/standards/sist/6e6586ee-a7ce-4686-b1dc-11c0bbfd5329/osist-pren-iec-61851-21-1-2025

6

CONTENTS

7	FOI	REW	ORD		5
8	1	Scor	e		7
9	2	•		eferences	
10	3				
10	4			t conditions	
	-				
12	5			ds and requirements	
13		5.1		etup for vehicle in charging mode	12
14 15			5.1.1	Host vehicle in charging mode 1 or mode 2 (AC power charging without communication)	12
16 17			5.1.2	Host vehicle in charging mode 3 (AC power charging with communication) or mode 4 (DC power charging with communication)	13
18		5.2	ESA te	est setup	14
19		5.4	Immur	nity test methods	14
20			5.4.1	General	14
21			5.4.2	Function Performance Criteria	15
22			5.4.3	Test Severity Levels	15
23 24			5.4.4	Immunity to electrical fast transient/burst disturbances conducted along a.c. and d.c. power lines	15
25			5.4.5	Immunity to surges conducted along a.c. and d.c. power lines	16
26			5.4.6	Immunity to electromagnetic radiated RF-fields	19
27			5.4.7	Immunity to Pulses on Supply Lines	24
28		5.5	Emiss	ion test methods	29
29			5.5.1	Test conditionsPreview	29
30			5.5.2	Emissions of Harmonics on a.c. power lines	29
31			5.5.3	Emission of voltage changes, voltage fluctuations and flicker on a.c.	
33			5.5.4	High-frequency conducted disturbances on a.c. or d.c. power lines	32
34 35			5.5.5	High-frequency radiated disturbances in the frequency range 30 – 1000 MHz	37
36 37			5.5.6	High-frequency radiated disturbances in the frequency range 1000 – 6000 MHz	
38			5.5.7	Transient emission tests	43
39 40	Anr	Direc	ct Curre	tive) Artificial Network (AN), High Voltage Artificial Network (HV-AN), ent charging Artificial Networks (DC-charging-AN), Artificial Mains	
41			,	MN) and Asymmetric Artificial Network (AAN)	
42		A.1		ral	
43		A.2		ial networks (AN)	
44			A.2.1	Component powered by LV	
45			A.2.2	Component powered by HV	
46		۸ ۵	A.2.3	Direct Current charging Artificial Networks (DC-charging-AN)	
47		A.3		ial Mains networks (AMN)	
48		A.4	-	metric artificial networks (AAN)	
49 50			A.4.1	General	
50			A.4.2	Signal/control port with symmetric lines	
51 52			A.4.3	Wired network port with powerline communication on power lines	
52 53			A.4.4	Signal/control port with PLC on control pilot line	
53			A.4.5	Signal/control port with control pilot line	5ა

54 55	Annex B (informative) Immunity of vehicles to low frequency phenomena conducted along AC power lines	55		
56	B.1 General	55		
57	B.2 Electric vehicle charging equipment test	56		
58	B.3 ESA separated on-board charger test	57		
59 60	Annex C (informative) Spectral density of non-intentional emissions (NIE) in the frequency range 9 kHz to 150 kHz	58		
61 62	C.1 Introduction of Integral Voltage Levels (IVL) for the limitation of the spectral density of NIE	58		
63	C.2 Recommended maximum IVL for NIE			
64				
65				
66 67	List of Figures			
68	Figure 1: Example for a typical test setup for electrical fast transient/ burst vehicle test	16		
69	Figure 2: Example for a typical test setup for vehicle in configuration "RESS charging			
70 71	mode coupled to the power grid" - coupling between lines for a.c. (single phase) and d.c. power lines	17		
72	Figure 3: Example for a typical test setup for vehicle in configuration "RESS charging			
73	mode coupled to the power grid" - coupling between each line and earth for a. c.			
74	(single phase) and d.c. power lines	17		
75 76	Figure 4: Example for a typical test setup for vehicle in configuration "RESS charging			
76 77	mode coupled to the power grid" - coupling between lines for a c. (three phases) power lines	18		
78	Figure 5: Example for a typical test setup for vehicle in configuration "RESS charging			
79	mode coupled to the power grid" - coupling between each line and earth for a c. (three			
80	phases) power lines	18		
81 82	Figure 6: Example for a typical test setup for vehicle with charging plug located at the side of the vehicle (a.c./d.c. power charging without communication)	20		
ps://83 84	Figure 7: Example for a typical test setup for vehicle with charging plug located at the front / rear of the vehicle (a.c./ d.c. power charging without communication)	-6181 21		
85 86	Figure 8: Example for a typical test setup for vehicle with the charging plug located at the side of the vehicle (a.c. or d.c. power charging with communication)			
87 88	Figure 9: Example for a typical test setup for vehicle with charging plug located at the front / rear of the vehicle (a.c. or d.c. power charging with communication)	23		
89 90	Figure 10: Example for a typical test setup for vehicle in configuration "RESS charging mode coupled to the power grid" - single phase charger test setup			
91	Figure 11: Example for a typical test setup for vehicle in configuration "RESS charging			
92	mode coupled to the power grid" - three-phase charger test setup	31		
93 94	Figure 12: Example for a typical test setup for vehicle in configuration "RESS charging mode coupled to the power grid"	32		
95 96	Figure 13: Example for a typical test setup for vehicle in configuration "RESS charging mode coupled to the power grid"	35		
97 98	Figure 14: Example for a typical test setup for vehicle in configuration "RESS charging mode coupled to the power grid"	36		
99 100	Figure 15: Example for a typical test setup for vehicle in configuration "RESS charging mode coupled to the power grid"	38		
101 102	Figure 16: Example for a typical test setup for test configuration for ESAs involved in RESS charging mode coupled to the power grid (example for biconical antenna)			
103 104	Figure 17: Example of a typical test setup for an ESA in RESS charging mode coupled to the power grid in the frequency range 1000 – 6000 MHz	43		

105	Figure A. 1: Example of 5 μH AN schematic	46
106	Figure A. 2: Characteristics of the AN impedance Z _{PB}	46
107	Figure A. 3: Example of 5 µH HV-AN schematic	48
108	Figure A. 4: Example of 5 µH HV-AN combination in a single shielded box	49
109	Figure A. 5: Impedance matching network attached between HV-ANs and EUT	50
110	Figure A. 6: Example of 5 μH / 50 Ω DC-charging-AN schematic	51
111	Figure A. 7: Example of an AAN for signal/control port with symmetric lines (e.g. CAN)	52
112	Figure A. 8: Example of AAN with wired network port with PLC on AC or DC powerlines	53
113	Figure A. 9: Example of AAN circuit for signal/control port with PLC on control pilot	54
114	Figure A. 10: Example of AAN circuit for pilot line	55
115	Figure B. 1: Example for a typical test setup for immunity to harmonics	57
116	Figure B. 2: Example for a typical test setup for immunity to supra-harmonics	58
117 118 119 120	List of Tables	
121	Table 1: Transient and surge immunity tests on both host vehicle and ESA level	25
122	Table 2: Immunity tests on host vehicle level	26
123	Table 3: Immunity tests on ESA level	27
124	Table 4: References for measuring harmonics a)	29
125	Table 5: References for measuring voltage fluctuations and flicker ^{a)}	
126	Table 6: Spectrum analyser parameters	33
127	Table 7: Scanning receiver parameters	33
128	Table 8: Maximum allowed radiofrequency conducted disturbances on a.c. power lines	33
129	Table 9: Maximum allowed radiofrequency conducted disturbances on d.c. power lines	34
130	Table 10: Conditional requirements for the frequency range on tests at the DC port	34
/131an	Table 11: Maximum allowed vehicle high-frequency radiated disturbances linear income	-6.13751-21-1
132	Table 12: Maximum allowed ESA high-frequency radiated disturbances	39
133 134	Table 13: Maximum allowed vehicle high-frequency radiated emissions in the frequency range 1000 MHz to 6000 MHz	41
135 136	Table 14: Maximum allowed ESA high-frequency radiated emissions in the frequency range 1000 MHz to 6000 MHz	44
137	Table 15: Required highest frequency for radiated measurement	44
138	Table 16: Maximum allowed ESA radiated disturbances on supply lines	44
139	Table A. 1: Magnitude of the AN impedance Z _{PB}	46
140	Table B. 1: Immunity tests	56
141	Table C. 1: Recommended maximum Integral Voltage Levels	60