

SLOVENSKI STANDARD
oSIST prEN IEC 62364:2026
01-marec-2026

Hidravlični stroji - Smernice za obravnavanje hidroabrazivne erozije pri Kaplanovih, Francisovih in Peltonovih turbinah

Hydraulic machines - Guidelines for dealing with hydro-abrasive erosion in Kaplan, Francis and Pelton turbines

Wasserturbinen - Leitfaden für den Umgang mit hydroabrasiver Erosion in Kaplan-, Francis und Pelton-Turbinen

iTeh Standards

Machines hydrauliques - Lignes directrices relatives au traitement de l'érosion hydroabrasive des turbines Kaplan, Francis et Pelton

Document Preview

Ta slovenski standard je istoveten z: prEN IEC 62364:2026

[oSIST prEN IEC 62364:2026](#)

<https://standards.iteh.si/catalog/standard/sist/2.11.1672-86-1-427610en-2-16b081f8e8/sist-pren-iec-62364-2026>

ICS:

23.100.10	Hidravlične črpalke in motorji	Pumps and motors
27.140	Vodna energija	Hydraulic energy engineering

oSIST prEN IEC 62364:2026

en

4/538/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

PROJECT NUMBER:

IEC 62364 ED3

DATE OF CIRCULATION:

2026-01-30

CLOSING DATE FOR VOTING:

2026-04-24

SUPERSEDES DOCUMENTS:

4/515/RR

IEC TC 4 : HYDRAULIC TURBINES

SECRETARIAT:

Canada

SECRETARY:

Mrs Christine Geraghty

OF INTEREST TO THE FOLLOWING COMMITTEES:

TC 114

HORIZONTAL FUNCTION(S):

ASPECTS CONCERNED:

Safety

 SUBMITTED FOR CENELEC PARALLEL VOTING NOT SUBMITTED FOR CENELEC PARALLEL VOTING

Attention IEC-CENELEC parallel voting

The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting.

The CENELEC members are invited to vote through the CENELEC online voting system.

<https://standards.iteh.ai>

<https://standards.iteh.ai/catalog/standards/sist/3d1d672a-8fa1-437f-b0ee-2a16b981f8a8/osist-pren-iec-62364-2026>

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE [AC/22/2007](#) OR [NEW GUIDANCE DOC](#)).

TITLE:

Hydraulic machines - Guidelines for dealing with hydro-abrasive erosion in Kaplan, Francis and Pelton turbines

PROPOSED STABILITY DATE: 2028

NOTE FROM TC/SC OFFICERS:

Copyright © 2025 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

1 CONTENTS

2	CONTENTS	2
3	FOREWORD	5
4	INTRODUCTION	7
5	1 Scope	8
6	2 Terms, definitions and symbols	8
7	3 Prediction of hydro-abrasive erosion rate	12
8	3.1 Model for hydro-abrasive erosion depth	12
9	3.2 Reference model	13
10	3.3 Experimental definition of particle abrasiveness	14
11	3.4 Simplified hydro-abrasive erosion evaluation	14
12	4 Design	15
13	4.1 General	15
14	4.2 Selection of materials with high resistance to hydro-abrasive erosion and	
15	coating	16
16	4.3 Stainless steel overlays	16
17	4.4 Water conveyance system	16
18	4.5 Valve	17
19	4.5.1 General	17
20	4.5.2 Protection (closing) of the gap between housing and trunnion	17
21	4.5.3 Stops located outside the valve	18
22	4.5.4 Proper capacity of inlet valve operator	18
23	4.5.5 Increase bypass size to allow higher guide vane leakage	18
24	4.5.6 Bypass system design	18
25	4.6 Turbine	18
26	4.6.1 General	18
27	4.6.2 Hydraulic design	18
28	4.6.3 Mechanical design	21
29	5 Operation and maintenance	27
30	5.1 Operation	27
31	5.2 Spares and regular inspections	29
32	5.3 Particle sampling and monitoring	29
33	6 Materials with high resistance to hydro-abrasive erosion	32
34	6.1 Guidelines concerning relative hydro-abrasive erosion resistance of	
35	materials including hydro-abrasive erosion resistant coatings	32
36	6.1.1 General	32
37	6.1.2 Discussion and conclusions	32
38	6.2 Guidelines concerning maintainability of hydro-abrasive erosion resistant	
39	coating materials	33
40	6.2.1 Definition of terms used in this subclause	33
41	6.2.2 Time between overhaul for protective coatings	33
42	6.2.3 Repair of protective coatings	33
43	7 Guidelines on insertions into specifications	34
44	7.1 General	34
45	7.2 Properties of particles going through the turbine	36
46	7.3 Size distribution of particles	37
47	Annex A (informative) PL calculation example	38

48	Annex B (informative) Measuring and recording hydro-abrasive erosion damages	40
49	B.1 Recording hydro-abrasive erosion damage	40
50	B.2 Pelton runner without coating	40
51	B.3 Needle tip and mouth piece without coating	41
52	B.4 Pelton runner with hardcoating	41
53	B.5 Needle tip, seat ring and nozzle housing with coating	41
54	B.6 Francis runner and stationary labyrinth without coating	42
55	B.7 Francis runner with coating and stationary labyrinth	42
56	B.8 Guide vanes and facing plates without coating	42
57	B.9 Guide vanes and facing plates with coating	43
58	B.10 Stay vanes	43
59	B.11 Francis labyrinth seals uncoated	43
60	B.12 Kaplan uncoated	43
61	B.13 Kaplan coated	44
62	B.14 Sample data sheets	44
63	B.15 Inspection record, runner blade inlet	45
64	B.16 Inspection record, runner blade outlet	46
65	B.17 Inspection record, runner band	47
66	B.18 Inspection record, guide vanes	48
67	B.19 Inspection record, facing plates and covers	49
68	B.20 Inspection record, upper stationary seal	50
69	B.21 Inspection record, upper rotating seal	51
70	B.22 Inspection record, lower stationary seal	52
71	B.23 Inspection record, lower rotating seal	53
72	B.24 Inspection record, runner bucket	54
73	B.25 Inspection record, Pelton runner splitter	55
74	Annex C (informative) Monitoring of particle concentration and properties and water sampling procedure	56
75	C.1 General	56
76	C.2 Sampling before building a power station	56
77	C.3 Sampling in existing power stations	57
78	C.4 Logging of samples	57
79	Annex D (informative) Procedures for analysis of particle concentration, size, hardness and shape	58
80	D.1 General	58
81	D.2 Particle concentration	58
82	D.3 Particle size distribution	58
83	D.4 Mineralogical composition	58
84	D.5 Particle geometry	58
85	Annex E (informative) Frequency of sediment sampling	61
86	Annex F (informative) Typical criteria to determine overhaul time due to hydro-abrasive erosion	62
87	F.1 General	62
88	F.2 Parameters which are observable while the unit is in operation	62
89	F.3 Criteria that require internal inspection of the unit	63
90	Annex G (informative) Example to calculate the hydro-abrasive erosion depth	64
91	Annex H (informative) Examples to calculate the TBO in the reference model	66
92	Annex I (informative) Background for hydro-abrasive erosion depth model	69

96	I.1	Model background and derivation.....	69
97	I.2	Introduction to the <i>PL</i> variable.....	70
98	I.3	Calibration of the formula.....	72
99	Annex J (informative) Quality control of thermal sprayed WC-CoCr.....	74	
100	J.1	Specification	74
101	J.2	Quality control	74
102	Bibliography.....	75	
103			
104	Figure 1 – Estimation of the characteristic velocities in guide vanes, W_{gv} , and runner, W_{run} , as a function of turbine specific speed	14	
105	Figure 2 – Simplified evaluation of risk of hydro-abrasive erosion for first assessment.....	16	
106	Figure 3 – Example of protection of transition area	19	
107	Figure 4 – Runner blade overhang in refurbishment project	21	
108	Figure 5 – Example of cavitation on runner band due to thicker blades	22	
109	Figure 6 – Example of design of guide vane trunnion seals	23	
110	Figure 7 – Example of fixing of facing plates from the dry side (bolt to the left)	25	
111	Figure 8 – Head cover balancing pipes with bends	26	
112	Figure 9 – Step labyrinth with optimized shape for hardcoating	28	
113	Figure 10 – Typical measurement ranges for continuous monitoring of suspended particles.....	31	
114	Figure 11 – Sample plot of particle concentration versus time	32	
115	Figure D.1 – Typical examples of particle geometry	61	
116	Figure I.1 – Example of flow pattern in a Pelton injector at different load	72	
117			

Document Preview

120	Table 1 – Values of K_f and p for various components	14
121	Table 2 – relevant properties of suspended particles for hydroabrasive erosion	30
122	Table 3 – comparison of measurement technologies for continuous monitoring of suspended particles	31
123	Table 4 – Overview over the feasibility for repair C on site	35
124	Table 5 – Form for properties of particles going through the turbine	37
125	Table 6 – Form for size distribution of particles	38
126	Table A.1 – Example of documenting sample tests	39
127	Table A.2 – Example of documenting sample results	40
128	Table B.1 – Inspection record, runner blade inlet form	46
129	Table B.2 – Inspection record, runner blade outlet form	47
130	Table B.3 – Inspection record, runner band form.....	48
131	Table B.4 – Inspection record, guide vanes form.....	49
132	Table B.5 – Inspection record, facing plates and covers form.....	50
133	Table B.6 – Inspection record, upper stationary seal form	51
134	Table B.7 – Inspection record, upper rotating seal form	52
135	Table B.8 – Inspection record, lower stationary seal form	53
136	Table B.9 – Inspection record, lower rotating seal form	54
137	Table B.10 – Inspection record, runner bucket	55
138	Table B.11 – Inspection record, Pelton runner splitter	56
139	Table G.1 – Calculations.....	66
140		

IEC CDV 62364 © IEC 2026

141	Table H.1 – Pelton turbine calculation example	67
142	Table H.2 – Francis turbine calculation example	68
143	Table I.1 – Analysis of the calibration constant K_f and p	74
144	Table J.1 – Recommended items to include in HVOF inspection	75
145		
146		

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[oSIST prEN IEC 62364:2026](#)

<https://standards.iteh.ai/catalog/standards/sist/3d1d672a-8fa1-437f-b0ee-2a16b981f8a8/osist-pren-iec-62364-2026>